Electron-Phonon Scattering

in 1D, 2D, and 3D

Mark Lundstrom

Electrical and Computer Engineering Purdue University West Lafayette, IN USA

9/14/17

outline

1) Review of ADP Scattering in 3D

- 2) ADP Scattering in 2D: MCA
- 3) ADP Scattering in 2D: FGR
- 4) ADP Scattering in 1D: FGR
- 5) Summary

ADP scattering: 3D review

$$S(\vec{p},\vec{p}') = \frac{2\pi}{\hbar} |H_{p',p}|^2 \delta(E' - E \mp \hbar \omega)$$

$$H_{p',p} = \frac{1}{\Omega} \int_{-\infty}^{+\infty} e^{-i\vec{p}\cdot\vec{r}/\hbar} U_{S}(\vec{r}) e^{i\vec{p}\cdot\vec{r}/\hbar} d\vec{r}$$

$$\begin{split} u_{q}\left(\vec{r},t\right) &= A_{q}e^{\pm i\left(\vec{q}\cdot\vec{r}-\omega_{q}t\right)} \\ \left|A_{q}\right|^{2} &= \frac{\hbar}{2\rho\Omega\omega} \left(N_{\omega} + \frac{1}{2}\mp\frac{1}{2}\right) \\ U_{S} &= K_{q}u_{q} \\ N_{\omega} &= \frac{1}{e^{\hbar\omega/k_{B}T} - 1} \approx \frac{k_{B}T}{\hbar\omega} \\ N_{\omega} &\approx N_{\omega} + 1 \end{split}$$

ADP scattering: 3D review

$$H_{p',p} = \frac{1}{\Omega} \int_{-\infty}^{+\infty} e^{-i\vec{p}\cdot\vec{r}/\hbar} \left(\sum_{\vec{q}} K_q u_q\right) e^{i\vec{p}\cdot\vec{r}/\hbar} d\vec{r}$$

$$\left|H_{p',p}\right|^{2} = \frac{1}{\Omega} \sum_{\vec{q}} U_{ac} \frac{1}{\Omega} \left|\int_{-\infty}^{+\infty} e^{-i\vec{p}\cdot\vec{r}/\hbar} \left(e^{\pm i\vec{q}\cdot\vec{r}}\right) e^{i\vec{p}\cdot\vec{r}/\hbar} d\vec{r}\right|^{2}$$
$$U_{ac} = \Omega \left|K_{q}\right|^{2} \left|A_{q}\right|^{2} = \frac{D_{A}^{2}k_{B}T_{L}}{2c_{l}}$$
$$\delta\left(\vec{p}' - \vec{p} \mp \hbar\vec{q}\right)$$

$$\left|H_{p',p}\right|^{2} = \frac{1}{\Omega} U_{ac} \delta\left(\vec{p}' - \vec{p} \mp \hbar \vec{q}\right)$$

ADP scattering: 3D review

$$S(\vec{p},\vec{p}') = \frac{2\pi}{\hbar} \frac{U_{ac}}{\Omega} \delta(\vec{p}' - \vec{p} \mp \hbar \vec{q}) \delta(E' - E \mp \hbar \omega) \qquad U_{ac} = \frac{D_A^2 k_B T}{2c_l}$$

$$\frac{1}{\tau} = \frac{1}{\tau_m} = \sum_{\vec{p}'} S(\vec{p}, \vec{p}')$$

$$\frac{1}{\tau(E)} = \frac{2\pi}{\hbar} U_{ac} \frac{D_{3D}(E)}{2}$$

$$\tau = \tau_0 \left(E/k_B T \right)^{-1/2}$$
$$s = -1/2$$
$$\tau_0 \propto T^{-3/2}$$

outline

1) Review of ADP Scattering in 3D

2) ADP Scattering in 2D: MCA

- 3) ADP Scattering in 2D: FGR
- 4) ADP Scattering in 1D: FGR
- 5) Mobility in 1D, 2D, and 3D

Quantum confined carriers

Electrons are free to move in the x-y plane

Note that $p_z = \hbar k_z$ is quantized.

Quantum confined carriers

Electrons are free to move in the x-y plane

2D DOS

(A valley degeneracy of 1 is assumed.)

Momentum Conservation Approximation

2D Scattering rate: subband 1

2D Scattering rate: subband 2

2D Scattering rate: subband 1 to 2

2D Scattering rate: subband 2 to 1

2D Total scattering rate

outline

- 1) Review of ADP Scattering in 3D
- 2) ADP Scattering in 2D: MCA

3) ADP Scattering in 2D: FGR

- 4) ADP Scattering in 1D: FGR
- 5) Mobility in 1D, 2D, and 3D

Momentum conservation is an approximation

$$\Delta p_z \Delta z \ge \frac{\hbar}{2}$$

Momentum does not need to be strictly conserved!

Recall that for short times, energy is not strictly conserved.

Momentum and energy conservation result from FGR in the appropriate limits.

2D electrons and 3D phonons

2D electrons:

$$\Psi_{i,n}(\vec{\rho},z) = F_n(z) \frac{1}{\sqrt{A}} e^{i\vec{k}_{\parallel}\cdot\vec{\rho}} \qquad \Psi_{f,n'}(\vec{\rho},z) = F_{n'}(z) \frac{1}{\sqrt{A}} e^{i\vec{k}_{\parallel}'\cdot\vec{\rho}}$$

3D phonons:

$$u_q(\vec{r}) = A_q e^{\pm i\vec{q}\cdot\vec{r}} = A_q \left(e^{\pm i\vec{q}_{\parallel}\cdot\vec{\rho}} e^{\pm iq_z z} \right)$$

$$\left|H_{p',p}\right|^{2} = \frac{1}{\Omega} U_{ac} \sum_{\vec{q}} \left|\int_{-\infty}^{+\infty} \psi_{f}^{*} \left(e^{\pm i\vec{q}\cdot\vec{r}}\right) \psi_{i} d\vec{r}\right|^{2}$$

Matrix element for 2D electrons

$$\left|H_{p',p}\right|^{2} = \frac{1}{\Omega} U_{ac} \sum_{\vec{q}} \left|\int_{-\infty}^{+\infty} \psi_{f}^{*} \left(e^{\pm i\vec{q}\cdot\vec{r}}\right) \psi_{i} d\vec{r}\right|^{2}$$

$$\left|H_{p',p}\right|^{2} = \frac{1}{\Omega} U_{ac} \sum_{\vec{q}} \left|\int_{-\infty}^{+\infty} F_{n'}^{*}(z) \frac{1}{\sqrt{A}} e^{-i\vec{k}_{\parallel} \cdot \vec{\rho}} \left(e^{\pm i\vec{q}_{\parallel} \cdot \vec{\rho}} e^{\pm iq_{z}z}\right) F_{n}(z) \frac{1}{\sqrt{A}} e^{i\vec{k}_{\parallel} \cdot \vec{\rho}} d\vec{\rho} dz\right|^{2}$$

$$\begin{aligned} & \left| H_{p',p} \right|^{2} = \frac{1}{\Omega} U_{ac} \sum_{q_{z}} \left| \frac{1}{A} \int e^{-i(\vec{k}_{\parallel}' - \vec{k}_{\parallel} \mp \vec{q}_{\parallel}) \cdot \vec{\rho}} d\vec{\rho} \int_{-\infty}^{+\infty} F_{n'}^{*}(z) F_{n}(z) e^{\pm iq_{z}z} dz \right|^{2} \\ & \left| H_{p',p} \right|^{2} = \frac{1}{\Omega} U_{ac} \delta\left(\vec{p}_{\parallel}' - \vec{p}_{\parallel} \mp \hbar \vec{q}_{\parallel} \right) \sum_{q_{z}} \left| \int_{-\infty}^{+\infty} F_{n'}^{*}(z) F_{n}(z) e^{\pm iq_{z}z} dz \right|^{2} \end{aligned}$$

19

"Form factor"

$$\frac{1}{\Omega} \rightarrow \frac{1}{A} \times \frac{1}{L} \qquad \left| H_{p',p} \right|^2 = \frac{1}{A} U_{ac} \delta \left(\vec{p}_{\parallel}' - \vec{p}_{\parallel} \mp \hbar \vec{q}_{\parallel} \right) \left| F_{n',n} \right|^2 \left| F_{n',n} \right|^2 = \frac{1}{L} \sum_{q_z} \left| \int_{-\infty}^{+\infty} F_{n'}^*(z) F_n(z) e^{\pm i q_z z} dz \right|^2 3D \rightarrow 2D \left| H_{p',p} \right|^2 = \frac{1}{\Omega} U_{ac} \delta \left(\vec{p}' - \vec{p} \mp \hbar \vec{q} \right) \rightarrow \frac{1}{A} U_{ac} \delta \left(\vec{p}_{\parallel}' - \vec{p}_{\parallel} \mp \hbar \vec{q}_{\parallel} \right) \left| F_{n',n} \right|^2$$

Momentum conservation is replaced by momentum conservation in the plane times a "**form factor**."

Evaluation of the form factor

$$\begin{split} \left|F_{n',n}\right|^{2} &= \frac{1}{L} \sum_{q_{z}} \left|\int_{-\infty}^{+\infty} F_{n'}^{*}(z) F_{n}(z) e^{\pm iq_{z}z} dz\right|^{2} \\ \left|F_{n',n}\right|^{2} &= \frac{1}{L} \frac{L}{2\pi} \int dq_{z} \left|\int_{-\infty}^{+\infty} F_{n'}^{*}(z) F_{n}(z) e^{\pm iq_{z}z} dz\right|^{2} \\ \left|F_{n',n}\right|^{2} &= \frac{1}{2\pi} \int dq_{z} \int_{-\infty}^{+\infty} F_{n'}^{*}(z) F_{n}(z) e^{iq_{z}z} dz \int_{-\infty}^{+\infty} F_{n'}^{*}(z) F_{n}(z) e^{-iq_{z}z} dz \\ \left|F_{n',n}\right|^{2} &= \frac{1}{2\pi} \int dq_{z} \int_{-\infty}^{+\infty} F_{n'}^{*}(z) F_{n}(z) e^{iq_{z}z} dz \int_{-\infty}^{\infty} F_{n'}^{*}(z') F_{n}(z') e^{-iq_{z}z'} dz' \\ \left|F_{n',n}\right|^{2} &= \frac{1}{2\pi} \int e^{iq_{z}(z-z')} d\beta_{z} \int_{-\infty}^{+\infty} F_{n'}^{*}(z) F_{n}(z) dz \int_{-\infty}^{+\infty} F_{n'}^{*}(z') F_{n}(z') F_{n}(z') dz' \end{split}$$

Evaluation of the form factor (ii)

$$\left|F_{n',n}\right|^{2} = \frac{1}{2\pi} \int e^{iq_{z}(z-z')} dq_{z} \int_{-\infty}^{+\infty} F_{n'}^{*}(z) F_{n}(z) dz \int_{-\infty}^{+\infty} F_{n'}^{*}(z') F_{n}(z') dz'$$

Do the integral over q_z first and use:

$$\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{iq_z(z-z')}dq_z = \delta(z-z')$$

$$\left|F_{n',n}\right|^{2} = \int_{-\infty}^{+\infty} \left|F_{n'}\left(z\right)\right|^{2} \left|F_{n}\left(z\right)\right|^{2} dz$$

Assume an infinite barrier quantum well: $F_n(z) = \sqrt{\frac{2}{W}} \sin(n\pi z/W)$

$$\left|F_{n',n}\right|^2 = \frac{1}{2W} \left(2 + \delta_{n,n'}\right)$$

= 3/2W for intra-subband scattering
= 1/W for inter-subband scattering

3D to 2D re-cap

$$\begin{split} \left|H_{p',p}\right|^{2} &= \frac{1}{\Omega} U_{ac} \delta\left(\vec{p}' - \vec{p} \ \mp \hbar \vec{q}\ \right) \rightarrow \frac{1}{A} U_{ac} \delta\left(\vec{p}'_{\parallel} - \vec{p}_{\parallel} \mp \hbar \vec{q}_{\parallel}\right) \left|F_{n',n}\right|^{2} \\ &\left|F_{n',n}\right|^{2} = \int_{-\infty}^{+\infty} \left|F_{n'}(z)\right|^{2} dz \int_{-\infty}^{+\infty} \left|F_{n}\left(z\right)\right|^{2} dz \\ &\left|F_{n',n}\right|^{2} = \frac{1}{2W} \left(2 + \delta_{n,n'}\right) \quad \text{(infinite barrier well)} \\ \\ \hline For intra-subband scattering, the scattering rate will be 50\% greater than intersubband scattering \\ \text{subband scattering} \end{aligned}$$

2D scattering rate

$$S(\vec{p},\vec{p}') = \frac{2\pi}{\hbar} \frac{U_{ac}}{A} \delta\left(\vec{p}_{\parallel}' - \vec{p}_{\parallel} \mp \hbar \vec{q}_{\parallel}\right) \left|F_{n',n}\right|^{2} \delta\left(E' - E \mp \hbar \omega\right) \qquad U_{ac} = \frac{D_{A}^{2} k_{B} T_{L}}{2c_{l}}$$

$$\frac{1}{\tau} = \frac{1}{\tau_m} = \sum_{\vec{p}_{\parallel}'} S\left(\vec{p}_{\parallel}, \vec{p}_{\parallel}'\right)$$

$$F_{n',n}\Big|^2 = \frac{1}{2W}\Big(2 + \delta_{n,n'}\Big)$$

(infinite barrier well)

$$\frac{1}{\tau} = \frac{2\pi}{\hbar} U_{ac} \frac{D_{2D}(E)(2+\delta_{n,n'})}{2}$$

$$\tau = \tau_0 \left(\frac{E}{k_B T_L} \right)^0$$
$$s = 0$$
$$\tau_0 = \frac{2c_l \hbar^3}{D_A^2 m^*} \frac{1}{k_B T_L}$$

2D scattering rate vs. energy

outline

- 1) Review of ADP Scattering in 3D
- 2) ADP Scattering in 2D: MCA
- 3) ADP Scattering in 2D: FGR
- 4) ADP Scattering in 1D: FGR
- 5) Summary

$3D \rightarrow 1D$

Expect:

$$H_{p',p}\Big|^{2} = \frac{1}{\Omega} U_{ac} \delta\left(\vec{p}' - \vec{p} \mp \hbar \vec{q}\right) \rightarrow \frac{1}{L} U_{ac} \delta\left(p'_{x} - p_{x} \mp \hbar q_{x}\right) \left|F_{l',l}\right|^{2}$$

1D electrons:

$$\Psi_l(x, y, z) = F_l(y, z) \frac{1}{\sqrt{L}} e^{i\vec{k}_x \cdot \hat{x}}$$

Form factor in 1D

Lundstrom ECE-656 F17

 $-\infty$

 $-\infty$

 $-\infty$

 $-\infty$

1D scattering rate

$$S(p_x, p'_x) = \frac{2\pi}{\hbar} \frac{U_{ac}}{L} \delta(p'_x - p_x \mp \hbar q_x) |F_{l',l'}|^2 \delta(E' - E \mp \hbar \omega) \qquad U_{ac} = \frac{D_A^2 k_B T_L}{2c_l}$$

$$\frac{1}{\tau_{l,l'}} = \frac{1}{\tau_m} = \sum_{p'_x} S(p_x, p'_x)$$

$$\frac{1}{\tau_{l,l'}} = \frac{2\pi}{\hbar} U_{ac} \frac{D_{1D}(E)}{2} \left[\frac{\left(2 + \delta_{l,l'}\right)}{2W} \right]^2$$

$$\left|F_{l',l}\right|^{2} = \left[\frac{1}{2W}\left(2 + \delta_{l,l'}\right)\right]^{2}$$
 (infinite barrier well)

$$\tau_{11} = \tau_0 \left(E/k_B T_L \right)^{1/2}$$

$$s = +1/2$$

$$\tau_0 = \frac{8c_l \hbar^2}{9D_A^2 \sqrt{2m^*}} \frac{1}{\left(k_B T_L\right)^{1/2}}$$

1D scattering rate vs. energy

Questions?

1) Review of ADP Scattering in 3D

- 2) ADP Scattering in 2D: MCA
- 3) ADP Scattering in 2D: FGR
- 4) ADP Scattering in 1D: FGR
- 5) Summary

