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Landauer Approach 
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f1 E( ) = 1
1+ e E−EF1( ) kBT f2 E( ) = 1

1+ e E−EF 2( ) kBT

I
I device 

L

f1 E( ) f2 E( )

transmission, modes (channels), differences in Fermi functions 
   
I = 2q

h
T E( )∫ M E( ) f1 − f2( )dE



Outline 
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1)  Diffusive vs. ballistic transport 

2)  Transmission and MFP 

3)  Transmission and diffusion coefficient from the BTE 

4)  The MFP for backscattering 
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Transmission 

F+ x = 0( )
X 

X 
X 

X 

X X 
F+ x = L( )

 T F+ x = 0( )

X 

XF− x = 0( )

 1−T( )F+ x = 0( )

λ:  mean-free-path 
for backscattering 

L
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“diffusive transport”  T <<1
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Transmission (ballistic) 

F+ x = 0( )

F+ x = L( )
= F+ x = 0( )

F− x = 0( )
= 0

λ:  mean-free-path 
for backscattering 

L
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λ >> L

 T = 1ballistic transport: 



•  Electrons undergo a random walk as they go from left to 
right contact. 

•  Some terminate at contact 1, and some at contact 2. 

•  The average distance between collisions is the “mfp for 
backscattering”, λ 

•  “Diffusive” transport means L >> λ

•   Ballistic transport means L <<  λ 

•  The diffusive transit time will be much longer than the 
ballistic transit time. 
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Diffusive vs. ballistic transport 
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1)  Diffusive vs. ballistic transport 

2)  Transmission and MFP 

3)  Transmission and diffusion coefficient from the BTE 

4)  The MFP for backscattering 
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Diffusive transmission 
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Assume a channel that is much longer than the 
mean-free-path for backscattering,  
 
then, injected carriers diffuse to the other contact.  
Fick’s Law of diffusion should apply. 

  
L >> λ J = −qDn

dnS

dx
A cm   (2D)
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2D Diffusive transport 

L

x
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Inject  from the left contact, and collect at the right contact. 

  I
+ 0( )

injected current 

   T I + 0( ) = I

collected current 
 W

No injection 
from the right 

Top view  y

Thin sheet.  Electrons 
move in the  x-y plane 

back-scattered 
current 
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Diffusion across a thick base 

L

x

( )Sn xΔ

( )0SnΔ

( ) 0Sn LΔ ≈
  
I =WqDn

ΔnS 0( )
L

L λ>>
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Inject  from the left contact, and collect at the right contact. 

  I
+ 0( )

injected current 
   T I + 0( ) = I

collected current 
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Transmission and current 

L

x

( )Sn xΔ

  ΔnS 0( )

  ΔnS L( ) ≈ 0
L λ>>
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  I
+ 0( )

injected current 
   T I + 0( ) = I

collected current 

  
I =WqDn

ΔnS 0( )
L

   
I =WqDn

ΔnS 0( )
L

=T I + 0( )
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Carrier density at x = 0 and x = L 

L

x

( )Sn xΔ

  ΔnS 0( ) = ?

  ΔnS L( ) ≈ 0
L λ>>
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Inject  from the left contact, and collect at the right contact. 

  I
+ 0( )

injected current 
  I

+ 0( ) = qWqυTΔnS
+ 0( )

  
ΔnS

+ 0( ) = I + 0( )
WqυT

≈ ΔnS
− 0( )

diffusive transport 
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Carrier distribution 
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 υ =υT

kx

f kx( )

  f x,kx > 0( )  f x,kx < 0( ) ≈ f x,kx > 0( )

Both the +x and –x-directed fluxes move at the same 
velocity – the unidirectional thermal velocity. 

 
υ =υT



Transmission in the diffusive limit 

  
ΔnS

+ 0( ) = I + 0( )
WqυT

≈ ΔnS
− 0( )   ΔnS 0( ) = ΔnS

+ 0( ) + ΔnS
− 0( )

  
I =WqDn

ΔnS 0( )
L

  
ΔnS 0( ) = 2×

I + 0( )
WqυT

  
Dn =

υTλ
2

   
T = λ

L
<<1

diffusive limit 
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I =T I + 0( ) =T qWqυTΔnS

+ 0( ){ }

Can prove from 
the flux 
equations. 
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Transmission 

T E( ) = λ E( )
λ E( ) + L

λ is the “mean-free-path 
for backscattering” 

This expression can be 
derived with relatively few 
assumptions. 

λ E( ) ≠υ E( )τ E( ) = Λ

 
L >> λ T = λ

L
<<11) Diffusive: 

2) Ballistic:  L << λ T = 1

3) Quasi-ballistic:  L ≈ λ T <1
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Outline 
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1)  Diffusive vs. ballistic transport 

2)  Transmission and MFP 

3)  Transmission and diffusion coefficient from the BTE 

4)  The MFP for backscattering 
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Introduction 
We have argued that there is a simple connection 
between the mean-free-path and transmission: 
 
 
 
Where does this expression come from?  

( ) ( )
( )
E

T E
E L
λ

λ
=

+

The mean-free-path is expected to be the “average 
distance” between scattering events: 
 
 
Exactly what is the relation? 

( ) ( ) ( )E E Eλ υ τ∝
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Problem specification 

( )mfp Eλ=
0=E

  I
+ E,x = 0( )    T E( ) I + E,x = 0( )

   R E( ) I + E,x = 0( )
1)  Inject from left only. 
 
2)  Ignore “vertical transport” (elastic scattering or near-equilibrium), so 

T12(E) = T21(E) = T(E). 

Then relate T to the mean-free-path for backscattering within the slab. 
(No assumption about whether the slab length, L, is long or short 
compared to the mfp, but we do assume that the mean-free-path is 
not position-dependent.) 

x
0 L

(absorbing contact) 
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Solving the flux equations 

 MFP = λ 0=E( 0)I x+ =    I
+ x = L( ) =T I + (x = 0)

   R I + (x = 0)
x

0

( ) ( ) ( )dI x I x I x
dx λ λ

+ + −

= − +

( )I x+

( )I x−

( ) ( ) (constant)I I x I x+ −= −

( ) ( )I x I x I− += −

  

dI + (x)
dx

= −
I
λ

L

absorbing boundary 
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Position-dependent flux 

mfp λ= 0=E( 0)I x+ =

   R I + x = 0( )
x

0

( )I x+

( )I x−

( ) (0) xI x I I
λ

+ += −

absorbing boundary 

L

( )

( )

00

I x x

I

IdI dx
λ

+

+

+ ′= −∫ ∫
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dI + (x)
dx

= −
I
λ

  I
+ (x = L)
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Flux that emerges from the right 

 MFP = λ 0=E
  I

+ (x = 0)   I
+ (x = L)

   R I + (x = 0)
x

0

( )I x+

( )I x−

( ) (0) xI x I I
λ

+ += −
  
I + (x) = I + (0) − I + (x) − I − (x)( ) x

λ

  
I + (L) = I + (0) − I + (L) − I − (L)( ) L

λ
( ) 0I L− =

absorbing boundary 

L

( ) (0) ( ) LI L I I L
λ

+ + += −



22 

Transmission 

0=E

   R I + (x = 0)

x
0

( )I x+

( )I x−

( ) (0) ( ) LI L I I L
λ

+ + += −

absorbing boundary 

(0)( )
1
II L
L λ

+
+ =

+

   

I + (L)
I + (0)

=T = λ
λ + L

   T → 0 L >> λ

   T →1 L << λ

  
T E( ) = λ E( )

λ E( ) + L    T E( ) +R E( ) = 1

L

  I
+ (x = 0)   I

+ (x = L) MFP = λ
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Diffusive limit 

0=E

   R I + (x = 0)
x

0

( )I x+

( )I x− absorbing boundary 

L

  I
+ (x = 0)   I

+ (x = L) MFP = λ

   I = I + (x = L) =T I + (x = 0)

  
I + (x = L) = λ

L
I + (x = 0)

  I
+ 0( ) = qWqυTΔnS

+ 0( )
  
I =WqDn

ΔnS 0( )
L

   
I =T I + 0( ) = λ

L
qWqυTΔnS

+ 0( ){ }

Fick’s Law: 

  
Dn =

υTλ
2
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1)  Diffusive vs. ballistic transport 

2)  Transmission and MFP 

3)  Transmission and diffusion coefficient from the BTE 

4)  The MFP for backscattering 
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Backscattering in 1D 
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incident 
electron X

scattering  
potential 

forward 
scattering 

( ) ( ) ( )2 mE E Eλ υ τ=

x

back 
scattering 

If we assume that the scattering is isotropic (equal 
probability of scattering forward or back) then average time 
between backscattering events is 2τ. 

( )
2

2 x m

x

E
υ τ

λ
υ

≡
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Backscattering in 2D 
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incident electron 
scattering  
potential 

x

( ) ( ) ( )
2 mE E Eπλ υ τ=

If we assume that the scattering is isotropic: 

back scattering 

forward scattering 

θ

more severe back 
scattering 

X

( )
2

2 x m

x

E
υ τ

λ
υ

≡
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Mean-free-path for backscattering 

( )
2

2 x m

x

E
υ τ

λ
υ

≡ This is an average over angle at a specific 
energy, E. 

  

λ E( ) = 2υ E( )τm E( ) 1D

λ E( ) = π
2
υ E( )τm E( ) 2D

λ E( ) = 4
3
υ E( )τm E( ) 3D
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Changwook Jeong, et al. “On Landauer vs. Boltzmann and Full Band vs. Effective Mass 
Evaluation of Thermoelectric Trans-port Coefficients,” J. Appl. Phys., 107, 023707, 2010. 



Lundstrom ECE-656 F17 28 

Questions? 

  

λ E( ) = 2υ E( )τm E( ) 1D

λ E( ) = π
2
υ E( )τm E( ) 2D

λ E( ) = 4
3
υ E( )τm E( ) 3D

  
T E( ) = λ E( )

λ E( ) + L

  
Dn =

υTλ
2


