Resistors at *T* **= 0 K**

Mark Lundstrom

Electrical and Computer Engineering Purdue University West Lafayette, IN USA

9/29/17

Landauer Approach

$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE$$

transmission, modes (channels), differences in Fermi functions

Near-equilibrium (constant temperature)

$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE$$
$$(f_1 - f_2) \rightarrow \left(-\frac{\partial f_0}{\partial E}\right) qV$$

$$I = GV \qquad G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E}\right) dE$$

Linear (near-equilibrium) transport.

1D Resistor

Independent of bandstructure (except for valley degeneracy).

Because it simplifies the math, we will use a 1D resistor to illustrate several, more general points.

1D Resistor: conventional, diffusive

$$R = \sigma_{1D} L$$
 $\sigma_{1D} = n_L q \mu_n$ S-m

What answer does the Landauer Approach give?

Outline

- 1) Fully degenerate, ballistic, 1D conductance
- 2) Effect of scattering
- 3) Apparent conductivity and apparent MFP
- 4) Mobility and apparent mobility
- 5) Alternative expressions for conductivity
- 6) Other materials and dimensions

Degenerate conditions

Semiconductor (T = 0 K)

Metal (T = 300 K)

Ballistic current: degenerate

$$G = \frac{2q}{h} \int \mathcal{T}(E) M_{1D}(E) \left(-\frac{\partial f_0}{\partial E}\right) dE$$

$$G = \frac{2q}{h} \mathcal{T}(E_F) M_{1D}(E_F)$$

 $G_{B} = \frac{2q}{h}g_{v}$ ballistic conductance of a nanowire at T = 0 K.

Ballistic transport:

$$\mathcal{T}\left(E_{F}\right) = 1$$

1D:

$$M_{1D}(E_F) = g_v$$

Degenerate:

$$\left(-\frac{\partial f_0}{\partial E}\right) = \delta\left(E = E_F\right)$$

1D Resistor: ballistic and fully degenerate

Resistance is independent of length!

Outline

- 1) Fully degenerate, ballistic, 1D conductance
- 2) Effect of scattering
- 3) Apparent conductivity and apparent MFP
- 4) Mobility and apparent mobility
- 5) Alternative expressions for conductivity
- 6) Other materials and dimensions

1D Resistor: at T = 0 K with scattering

$$G = \frac{2q^2}{h} \int \mathcal{T}(E) M_{1D}(E) \left(-\frac{\partial f_0}{\partial E}\right) dE \to \frac{2q^2}{h} \mathcal{T}(E_F) M_{1D}(E_F) = \frac{1}{R}$$

$$\mathcal{T}(E_F) = \frac{\lambda(E_F)}{\lambda(E_F) + L} \qquad M_{1D}(E) = g_v$$

Lundstrom ECE-656 F17

11

1D Resistor: with scattering (degenerate)

1D Resistor: with scattering (degenerate)

1D Resistor: diffusive limit

$$L >> \lambda(E_F)$$

$$R = R_B \left(1 + \frac{L}{\lambda(E_F)} \right) \to R_B \frac{L}{\lambda(E_F)}$$

$$R = \rho_{1D}L \qquad \qquad \rho_{1D} = \frac{h}{2q^2 M_{1D}(E_F)} \frac{1}{\lambda(E_F)}$$

Conventional approach:

$$\rho_{1D} = \frac{1}{n_L q \mu_n}$$

14

1D Resistor: diffusive limit

Outline

- 1) Fully degenerate, ballistic, 1D conductance
- 2) Effect of scattering
- 3) Apparent conductivity and apparent MFP
- 4) Mobility and apparent mobility
- 5) Alternative expressions for conductivity
- 6) Other materials and dimensions

1D Resistor: apparent mfp

1D Resistor: apparent conductivity

$$R = \left(\frac{R_B}{\lambda_{app}(L)}\right)L = \frac{1}{\sigma_{1D}^{app}(L)}L$$

$$R_{B} = \frac{h}{2q^2} \frac{1}{M_{1D}(E_{F})}$$

$$\sigma_{1D}^{app} = \frac{2q^2}{h} M_{1D} (E_F) \lambda_{app} (E_F)$$

- The <u>physical conductivity</u> is a material parameter – independent of the length of the resistor.
- 2) The <u>apparent conductivity</u> is a length dependent quantity. It is a way to write the resistance in a way that looks like the traditional diffusive result.
- This equation is valid all the way from the ballistic to diffusive limit.

1D Resistor: apparent MFP

- The <u>physical MFP</u> is a material parameter – generally independent of the length of the resistor.
- 2) The <u>apparent MFP</u> is a length dependent quantity. It is used to write the resistance in a way that looks like the traditional diffusive result.
- 3) The apparent MFP is the shorter of the actual MFP and the length of the resistor.

$$\frac{1}{\lambda_{app}(L)} = \left(\frac{1}{L} + \frac{1}{\lambda(E_F)}\right)$$

Outline

- 1) Fully degenerate, ballistic, 1D conductance
- 2) Effect of scattering
- 3) Apparent conductivity and apparent MFP
- 4) Mobility and apparent mobility
- 5) Alternative expressions for conductivity
- 6) Other materials and dimensions

Mobility

$$G = \sigma_{1D}/L$$
 (diffusive limit)

Conventional expression:

Landauer expression:

$$\sigma_{1D} = n_L q \mu_n \qquad \qquad \sigma_{1D} = \frac{2q^2}{h} M_{1D} \left(E_F \right) \lambda \left(E_F \right)$$

Equate the two expressions:

$$\mu_n = \frac{2q}{h} \frac{M_{1D}(E_F)\lambda(E_F)}{n_L}$$

Exercise:

For a parabolic band semiconductor, show that:

$$\mu_n = \frac{2q}{h} \frac{M_{1D}(E_F)\lambda(E_F)}{n_L} = \frac{q\tau_m(E_F)}{m^*}$$

Mobility from conductivity

For materials with non-parabolic band structures, one should NOT try to deduce the mobility from:

 $\mu_n = q\tau_m(E_F)/m^*$

Instead, compute conductivity first: $\sigma_{1D} = \frac{2q^2}{h} M_{1D} (E_F) \lambda (E_F)$

Then deduce the mobility from:
$$\mu_n = \frac{\sigma_{1D}}{n_L q}$$

Apparent mobility

$$G = \sigma_{1D}^{app} (L) / L \quad \sigma_{1D}^{app} = \frac{2q^2}{h} M_{1D} (E_F) \lambda_{app} (E_F) \qquad = n_L q \mu_{app}$$

$$\mu_n = \frac{2q}{h} \frac{M_{1D}(E_F)\lambda(E_F)}{n_L}$$
$$\mu_n^{app} = \frac{2q}{h} \frac{M_{1D}(E_F)\lambda_{app}(E_F)}{n_L}$$

i)
$$L >> \lambda$$
 $\mu_{app} \rightarrow \mu_n$

ii) $L \ll \lambda$ $\mu_{app} \rightarrow \mu_{B}$

$$\mu_{B} = \frac{2q}{h} \frac{M_{1D}(E_{F})L}{n_{L}}$$

Lundstrom ECE-656 F17

24

Ballistic mobility

$$\mu_{n}^{app} = \frac{2q}{h} \frac{M_{1D}(E_{F})\lambda_{app}(E_{F})}{n_{L}} \qquad \qquad \frac{1}{\lambda_{app}(L)} = \left(\frac{1}{L} + \frac{1}{\lambda(E_{F})}\right)$$
$$L \ll \lambda \qquad \qquad \lambda_{app}(L) \rightarrow L \qquad \qquad \mu_{n}^{app} \rightarrow \mu_{B} = \frac{2q}{h} \frac{M_{1D}(E_{F})L}{n_{L}}$$

In the ballistic limit, the MFP is replaced by the length of the resistor. How do we interpret this result?

Ballistic mobility

strong inelastic scattering

strong inelastic scattering

All scattering occurs in the contacts. No scattering occurs in the device. An electron that travels from contact 1 to contact 2 travels a distance of *L* between scattering events, so in the ballistic limit, the MFP is *L*.

Outline

- 1) Fully degenerate, ballistic, 1D conductance
- 2) Effect of scattering
- 3) Apparent conductivity and apparent MFP
- 4) Mobility and apparent mobility
- 5) Alternative expressions for conductivity
- 6) Other materials and dimensions

Alternative expression for diffusive conductivity

$$\sigma_{1D} = \frac{2q^2}{h} \lambda(E_F) M_{1D}(E_F) \qquad \sigma_{1D} = n_L q \mu_n$$

Landauer Traditional

There are several other ways to write the conductivity...

Four ways to write the conductivity

$$\sigma_{1D} = \frac{2q^2}{h}\lambda(E_F)M_{1D}(E_F)$$

$$\sigma_{1D} = q^2v_F^2\tau_m(E_F)D_{1D}(E_E)$$

$$\sigma_{1D} = q^2D_n(E_F)D_{1D}(E_F)$$

$$\sigma_{1D} = n_Lq\mu_n$$
frequently
$$D_n(E) = \frac{v_F\lambda(E_F)}{2}$$
the BTE

Outline

- 1) Fully degenerate, ballistic, 1D conductance
- 2) Effect of scattering
- 3) Apparent conductivity and apparent MFP
- 4) Mobility and apparent mobility
- 5) Alternative expressions for conductivity
- 6) **Other materials and dimensions**

Other materials and dimensions

$$G = \frac{2q}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E}\right) dE$$
$$G = \frac{2q}{h} \int \left\{\frac{\lambda(E)}{\lambda(E) + L}\right\} M(E) \left(-\frac{\partial f_0}{\partial E}\right) dE$$

To treat other materials and dimensions, use the appropriate M(E) and MFP(E).

Other materials and dimensions

$$M(E) = M_{1D}(E) = \frac{h}{4} \langle v_x^+ \rangle D_{1D}(E)$$
$$M(E) = M_{2D}(E)W = W\frac{h}{4} \langle v_x^+ \rangle D_{2D}(E)$$
$$M(E) = M_{3D}(E)A = A\frac{h}{4} \langle v_x^+ \rangle D_{3D}(E)$$

DOS per unit energy and length

DOS per unit energy and area

DOS per unit energy and volume

1D, 2D, and 2D Resistors

Conductivity in 1D, 2D, and 3D

$$G_{1D} = \sigma_{1D} \frac{1}{L} \qquad \sigma_{1D} = \frac{2q^2}{h} \lambda(E_F) M(E_F) \qquad \sigma_{1D} = \frac{2q^2}{h} \lambda(E_F) M_{1D}(E_F)$$
$$G_{2D} = \sigma_{1D} \frac{W}{L} \qquad \sigma_{2D} = \frac{2q^2}{h} \lambda(E_F) M(E_F) / W \qquad \sigma_{2D} = \frac{2q^2}{h} \lambda(E_F) M_{2D}(E_F)$$
$$G_{3D} = \sigma_{1D} \frac{A}{L} \qquad \sigma_{3D} = \frac{2q^2}{h} \lambda(E_F) M(E_F) / A \qquad \sigma_{3D} = \frac{2q^2}{h} \lambda(E_F) M_{3D}(E_F)$$

All of the results we discussed in 1D, can be done in 2D and 3D for any material (e.g. mobility, apparent mobility, apparent MFP, apparent conductivity, etc.

Questions?

Ballistic resistors

Diffusive resistors

Ballistic to diffusive

Conductivity and apparent conductivity

Mobility, apparent mobility, and ballistic mobility

