Phonon Transport: A Landauer Approach

Mark Lundstrom

Electrical and Computer Engineering Purdue University West Lafayette, IN USA

10/18/17

Outline

1) Quick review

- 2) General model
- 3) Ballistic phonon transport
- 4) Diffusive phonon transport
- 5) Discussion
- 6) Questions?

Electrons and phonons

Electrons and phonon dispersion

electrons in Si

phonons in Si

note the different energy scales!

(DFT calculations by Dr. J. Maassen, Dalhousie)

Heat flow by lattice vibrations (phonons)

$$E_{L} = \int_{0}^{\infty} (\hbar\omega) D_{ph}(\hbar\omega) n_{0}(\hbar\omega) d(\hbar\omega) \qquad C_{V} = \frac{\partial E_{L}}{\partial T}\Big|_{V}$$

Review: electron transport (3D)

$$I = \frac{2q}{h} \int \mathcal{T}_{el}(E) M_{el}(E) (f_1 - f_2) dE$$

$$M_{el}(E) = A \frac{h}{4} \langle v_x^+ \rangle D_{3D}(E) \qquad \mathcal{T}_{el}(E) = \frac{\lambda(E)}{\lambda(E) + L}$$

Outline

1) Quick review

2) General model

- 3) Ballistic phonon transport
- 4) Diffusive phonon transport
- 5) Discussion
- 6) Questions?

Landauer approach to phonon transport

Heat flux

$$I = \frac{2q}{h} \int \mathcal{T}_{el}(E) M_{el}(E) (f_1 - f_2) dE$$
$$I_Q = \frac{1}{h} \int (\hbar\omega) \mathcal{T}_{ph}(\hbar\omega) M_{ph}(\hbar\omega) (n_1 - n_2) d(\hbar\omega)$$

Assume **ideal contacts**, so that the transmission describes the transmission of the channel.

Near-equilibrium heat flux

$$I_{Q} = \frac{1}{h} \int (\hbar \omega) \mathcal{T}_{ph} (\hbar \omega) M_{ph} (\hbar \omega) (n_{1} - n_{2}) d(\hbar \omega)$$

$$n_{2} \approx n_{1} + \frac{\partial n_{1}}{\partial T_{L}} \Delta T_{L} \qquad \Delta T_{L} = T_{2} - T_{1} \qquad (n_{1} - n_{2}) \approx -\frac{\partial n_{1}}{\partial T_{L}} \Delta T_{L} \approx \frac{\partial n_{0}}{\partial T_{L}} \Delta T_{L}$$

$$\frac{\partial n_{0}}{\partial T_{L}} = \frac{\partial}{\partial T_{L}} \left\{ \frac{1}{e^{\hbar \omega / k_{B} T_{L}} - 1} \right\}$$

$$\frac{\partial n_{0}}{\partial T_{L}} = \frac{\hbar \omega}{T_{L}} \left(-\frac{\partial n_{0}}{\partial (\hbar \omega)} \right)$$

$$(n_{1} - n_{2}) \approx -\frac{\hbar \omega}{T_{L}} \left(-\frac{\partial n_{0}}{\partial (\hbar \omega)} \right) \Delta T_{L}$$

$$I_{Q} = -K_{L} \Delta T_{L}$$

Lattice thermal conductance (i)

$$I_{Q} = \frac{1}{h} \int (\hbar\omega) \mathcal{T}_{ph}(\hbar\omega) M_{ph}(\hbar\omega) (n_{1} - n_{2}) d(\hbar\omega) \qquad (n_{1} - n_{2}) = -\frac{\hbar\omega}{T_{L}} \left(-\frac{\partial n_{0}}{\partial(\hbar\omega)}\right) \Delta T_{L}$$

$$I_Q = -K_L \Delta T_L$$

$$K_{L} = \frac{\left(k_{B}T_{L}\right)^{2}}{hT_{L}}\int \mathcal{T}_{ph}(\hbar\omega)M_{ph}(\hbar\omega)\left\{\left(\frac{\hbar\omega}{k_{B}T_{L}}\right)^{2}\left(-\frac{\partial n_{0}}{\partial(\hbar\omega)}\right)\right\}d(\hbar\omega)$$

Lattice thermal conductance (ii)

$$I_{Q} = -K_{L}\Delta T_{L}$$

$$K_{L} = \frac{k_{B}^{2}T_{L}}{h} \int \mathcal{T}_{ph}(\hbar\omega) M_{ph}(\hbar\omega) \left\{ \left(\frac{\hbar\omega}{k_{B}T_{L}}\right)^{2} \left(-\frac{\partial n_{0}}{\partial(\hbar\omega)}\right) \right\} d(\hbar\omega)$$
Recall the electrical conductance:
$$G = \frac{2q^{2}}{h} \int \mathcal{T}_{el}(E) M_{el}(E) \left(-\frac{\partial f_{0}}{\partial E}\right) dE$$
"window function":
$$W_{el}(E) = \left(-\partial f_{0}/\partial E\right) \qquad \int_{-\infty}^{+\infty} \left(-\partial f_{0}/\partial E\right) dE = 1$$

Lattice thermal conductance (iii)

$$Q = -K_L \Delta T_L \quad K_L = \frac{k_B^2 T_L}{h} \int \mathcal{T}_{ph}(\hbar\omega) M_{ph}(\hbar\omega) \left\{ \left(\frac{\hbar\omega}{k_B T_L} \right)^2 \left(-\frac{\partial n_0}{\partial (\hbar\omega)} \right) \right\} d(\hbar\omega)$$

$$\int_{0}^{+\infty} \left(\frac{\hbar\omega}{k_{B}T_{L}}\right)^{2} \left(-\frac{\partial n_{0}}{\partial(\hbar\omega)}\right) d(\hbar\omega) = \frac{\pi^{2}}{3}$$

$$K_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \int \mathcal{T}_{ph} (\hbar \omega) M_{ph} (\hbar \omega) \left\{ \frac{3}{\pi^{2}} \left(\frac{\hbar \omega}{k_{B} T_{L}} \right)^{2} \left(-\frac{\partial n_{0}}{\partial (\hbar \omega)} \right) \right\} d(\hbar \omega)$$
$$W_{ph} (\hbar \omega)$$

13

Window functions: electrons vs. phonons

1) Fourier's Law of heat conduction: $I_Q = -K_L \Delta T_L$

2) Thermal conductance:

$$K_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \int \mathcal{T}_{ph}(\hbar \omega) M_{ph}(\hbar \omega) W_{ph}(\hbar \omega) d(\hbar \omega)$$

3) Quantum of heat conduction:

 $\frac{\pi^2 k_B^2 T_L}{3h}$

4) Window function for phonons:

$$W_{ph}(\hbar\omega) = \left\{ \frac{3}{\pi^2} \left(\frac{\hbar\omega}{k_B T_L} \right)^2 \left(-\frac{\partial n_0}{\partial (\hbar\omega)} \right) \right\}$$

15

Compare to: Electrical conduction

1) Electrical current: $I = G\Delta V$

2) Electrical conductance: $G = \frac{2q^2}{h} \int \mathcal{T}_{el}(E) M_{el}(E) W_{el} dE$

3) Quantum of electrical conduction: $\frac{2q^2}{h}$

4) Window function for electrons:

 $W_{el}(E) = \left(-\partial f_0 / \partial E\right)$

Outline

- 1) Quick review
- 2) General model

3) Ballistic phonon transport

- 4) Diffusive phonon transport
- 5) Discussion
- 6) Questions?

Ballistic phonon transport

$$I_{Q} = -K_{L}\Delta T_{L} = \frac{\Delta T_{L}}{R_{L}} \qquad K_{L} = \frac{\pi^{2}k_{B}^{2}T_{L}}{3h}\int \mathcal{T}_{ph}(\hbar\omega)M_{ph}(\hbar\omega)W_{ph}(\hbar\omega)d(\hbar\omega)$$

Ballistic phonon transport: $T_{ph}(\hbar\omega) = 1$

$$K_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \int M_{ph} (\hbar \omega) W_{ph} (\hbar \omega) d(\hbar \omega)$$

Finite thermal conductance even for ballistic phonon transport.

Analogous to quantum contact resistance for electrons ¹⁸

Quantized thermal transport

Measurement of the quantum of thermal conductance

K. Schwab*, E. A. Henriksen*, J. M. Worlock*† & M. L. Roukes*

* Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125, USA

The physics of mesoscopic electronic systems has been explored for more than 15 years. Mesoscopic phenomena in transport processes occur when the wavelength or the coherence length of the carriers becomes comparable to, or larger than, the sample dimensions. One striking result in this domain is the quantization of electrical conduction, observed in a quasi-one-dimensional constriction formed between reservoirs of two-dimensional electron gas^{1,2}. The conductance of this system is determined by the number of participating quantum states or 'channels' within the

K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, *Nature*, **404**, 974, 2000.

Outline

- 1) Quick review
- 2) General model
- 3) Ballistic phonon transport
- 4) Diffusive phonon transport
- 5) Discussion
- 6) Questions?

Diffusive heat transport (3D)

$$I_{Q} = -K_{L}\Delta T_{L} \quad \text{(Watts)}$$

$$K_{L} = \frac{\pi^{2}k_{B}^{2}T_{L}}{3h} \int \mathcal{T}_{ph}(\hbar\omega) M_{ph}(\hbar\omega) W_{ph}(\hbar\omega) d(\hbar\omega) \quad \text{(Watts/K)}$$

$$\mathcal{T}_{ph}(\hbar\omega) = \frac{\lambda_{ph}(\hbar\omega)}{\lambda_{ph}(\hbar\omega) + L} \to \frac{\lambda_{ph}(\hbar\omega)}{L}$$

(diffusive phonon transport)

$$K_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \int \frac{\lambda_{ph}(\hbar\omega)}{L} M_{ph}(\hbar\omega) W_{ph}(\hbar\omega) d(\hbar\omega)$$

Conductance and conductivity

Conductance and conductivity

$$I_Q = -K_L \Delta T_L$$
 (Watts)
 $K_L = K_L \frac{L}{A}$
 $J_Q = -\kappa_L \frac{dT_L}{dx}$ (Watts/m²)

$$K_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \int \frac{\lambda_{ph} (\hbar \omega)}{L} M_{ph} (\hbar \omega) W_{ph} (\hbar \omega) d(\hbar \omega)$$

$$\kappa_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \int \lambda_{ph} (\hbar \omega) (M_{ph} (\hbar \omega) / A) W_{ph} (\hbar \omega) d(\hbar \omega)$$

Diffusive heat transport (3D)

$$J_{Q} = -\kappa_{L} \frac{dT_{L}}{dx} \qquad \text{(Watts / m^{2})}$$

$$\kappa_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \int \lambda_{ph} (\hbar \omega) \frac{M_{ph} (\hbar \omega)}{A} W_{ph} (\hbar \omega) d(\hbar \omega) \qquad \text{(Watts/m-K)}$$

$$J_{n} = \sigma \frac{d(F_{n}/q)}{dx} \quad \text{(Amperes / m^{2})}$$
$$\sigma = \frac{2q^{2}}{h} \int \lambda_{el}(E) \frac{M_{el}(E)}{A} W_{el}(E) dE \quad \text{(1/Ohm-m)}$$

Diffusive heat transport (3D)

$$J_{Q} = -\kappa_{L} \frac{dT_{L}}{dx} \quad \text{(Watts / m^{2})}$$
$$\kappa_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \langle M_{ph} / A \rangle \langle \langle \lambda_{ph} \rangle \rangle$$

(Watts/m-K)

$$J_{n} = \sigma \frac{d(F_{n}/q)}{dx} \quad (\text{Amperes / m}^{2})$$

$$\sigma = \frac{2q^{2}}{h} \langle M_{el}/A \rangle \langle \langle \lambda_{el} \rangle \rangle \quad (1/\text{Ohm-m})$$

Outline

- 1) Quick review
- 2) General model
- 3) Ballistic phonon transport
- 4) Diffusive phonon transport

5) Discussion

- -connection to traditional approach
- -Debye model
- -thermal conductivity vs. temperature
- -MFP distribution

5) Summary

Recall that for electrons, we related our Landauer approach to the mobility, because mobility is a traditional quantity that is widely used.

$$\sigma = \frac{2q^2}{h} \langle M_{el} / A \rangle \langle \langle \lambda_{el} \rangle \rangle \quad \leftrightarrow \quad n_0 q \mu_n$$

The traditional expression for the lattice thermal conductivity is:

$$\kappa_L = \frac{1}{3} \Lambda_{ph} \upsilon_{ph} C_V$$
 (Watts/m-K)

Where C_V is the specific heat at constant volume.

$$E_{L} = \int_{0}^{\infty} (\hbar\omega) D_{ph}(\hbar\omega) n_{0}(\hbar\omega) d(\hbar\omega) \qquad C_{V} = \frac{\partial E_{L}}{\partial T} \Big|_{V}$$

Specific heat is related to DOS.

Connection to traditional approach

$$\kappa_{L} = \frac{\pi^{2} k_{B}^{2} T}{3h} \langle M_{ph} / A \rangle \langle \langle \lambda_{ph} \rangle \rangle \leftrightarrow \frac{1}{3} \Lambda_{ph} \upsilon_{ph} C_{V} \qquad \text{(Watts/m-K)}$$

$$\begin{pmatrix} \lambda_{ph}(\hbar\omega) = \frac{4}{3}\upsilon_{ph}(\hbar\omega)\tau_{m}(\hbar\omega) = \frac{4}{3}\Lambda(\hbar\omega) \\ M_{ph}/A = \frac{h}{2}\langle\upsilon_{ph}^{+}\rangle D_{ph}(\hbar\omega) \quad \langle\upsilon_{ph}^{+}\rangle = \frac{\upsilon_{ph}^{+}}{2} \end{pmatrix}$$

See Lundstrom and Jeong, NET, Exercise 9.1, p. 180.

Outline

- 1) Quick review
- 2) General model
- 3) Ballistic phonon transport
- 4) Diffusive phonon transport

5) Discussion

-connection to traditional approach

-Debye model

- -thermal conductivity vs. temperature
- -MFP distribution

5) Summary

Debye model for acoustic phonons

Linear dispersion model

 $\omega = v_D q$

$$D_{ph}(\hbar\omega) = \frac{3(\hbar\omega)^2 \Omega}{2\pi^2 (\hbar\upsilon_D)^3} (J-m^3)^{-1}$$
$$M_{ph}(\hbar\omega) = \frac{3(\hbar\omega)^2 A}{2\pi\hbar\upsilon_D^2} (m^2)^{-1}$$

If acoustic phonons near q = 0mostly contribute to heat transport, the Debye model works well.

Debye model in practice

$$\kappa_{L} = \frac{\pi^{2} k_{B}^{2} T}{3h} \int \lambda_{ph} \frac{M_{ph}}{A} W_{ph} d(\hbar \omega)$$

$$M_{ph} \qquad \underbrace{ -\cdots }_{full band} (Si)$$

$$W_{ph} \qquad \underbrace{ -\cdots }_{300 \text{ K}} 50 \text{ K}$$

Window function spans the entire BZ at room temp.

Debye model works well at very temperatures below 50 K.

Compare to: Effective mass model for electrons

Parabolic dispersion assumption for electrons works well at room temperature.

Lundstrom ECE-656 F17

Outline

- 1) Quick review
- 2) General model
- 3) Ballistic phonon transport
- 4) Diffusive phonon transport

5) Discussion

- -connection to traditional approach
- -Debye model
- -thermal conductivity vs. temperature
- -MFP distribution

5) Summary

i) measured vs. calculated $\kappa_L(T_L)$ for silicon

C. Jeong, S. Datta, M. Lundstrom, "Full Dispersion vs. Debye Model Evaluation of Lattice Thermal Conductivity with a Landauer approach," *J. Appl. Phys.* **109**, 073718-8, 2011.

Population of modes vs. T_L

Mean-free-path vs. T_L

Temperature-dependent thermal conductivity

Lundstrom ECE-656 F17

Outline

- 1) Quick review
- 2) General model
- 3) Ballistic phonon transport
- 4) Diffusive phonon transport

5) Discussion

- -connection to traditional approach
- -Debye model
- -thermal conductivity vs. temperature
- -MFP distribution

5) Summary

MFP and thermal conductivity

$$\kappa_{L} = \frac{\pi^{2}k_{B}^{2}T}{3h} \int \lambda_{ph}(\hbar\omega) (M_{ph}(\hbar\omega)/A) W_{ph}(\hbar\omega) d(\hbar\omega)$$

$$\kappa_{L} = \frac{\pi^{2}k_{B}^{2}T}{3h} \int \left[\lambda_{ph}(\hbar\omega) (M_{ph}(\hbar\omega)/A) W_{ph}(\hbar\omega) \frac{d(\hbar\omega)}{d\lambda_{ph}} \right] d\lambda_{ph}$$

$$\kappa_{L} = \int \kappa_{\lambda} d\lambda_{ph}$$

$$\kappa_{\lambda}(\lambda_{ph}) = \frac{\pi^{2}k_{B}^{2}T}{3h} \lambda_{ph}(\hbar\omega) (M_{ph}(\hbar\omega)/A) W_{ph}(\hbar\omega) \frac{d(\hbar\omega)}{d\lambda_{ph}}$$

"MFP distribution"

MFP and thermal conductivity

Lundstrom ECE-656 F17

41

MFP spectra – phonons vs. electrons

J. Zhou, B. Liao and G. Chen, "First-principles calculations of thermal, electrical, and thermoelectric transport, properties of semiconductors," *Semicond. Sci. and Technol.*, **31**, 043001, 2016.

MFP spectra – phonons vs. electrons

Phonons have a broad distribution of MFPs; electrons have a much tighter distribution of MFP's.

J. Zhou, B. Liao and G. Chen, "First-principles calculations of thermal, electrical, and thermoelectric transport, properties of semiconductors," *Semicond. Sci. and Technol.*, **31**, 043001, 2016.

Outline

- 1) Quick review
- 2) General model
- 3) Ballistic phonon transport
- 4) Diffusive phonon transport
- 5) Discussion
 - -connection to traditional approach
 - -Debye model
 - -thermal conductivity vs. temperature
 - -MFP distribution

5) Summary

Summary

- 1) Our model for electrical conduction can readily be extended to describe phonon transport. The mathematical formulations are very similar.
- 2) Just as for electrons, phonon transport is quantized.
- The difference BW's of the electron and phonon dispersions has important consequences. For electrons, a simple dispersion (effective mass) often gives good results, but for phonons, the simple dispersion (Debye model) is not very good.
- There is no Fermi level for phonons, so the lattice thermal conductivity cannot be varied across many orders of magnitude like the electrical conductivity.

Electron vs. phonon conductivities

The expressions look similar:

$$\kappa_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \left\langle M_{ph} / A \right\rangle \left\langle \left\langle \lambda_{ph} \right\rangle \right\rangle \qquad \sigma = \frac{2q^{2}}{h} \left\langle M_{el} / A \right\rangle \left\langle \left\langle \lambda_{el} \right\rangle \right\rangle$$

In practice, the mfps often have similar values. The difference is in <*M*>.

For electrons, the location E_F can vary $\langle M \rangle$ over many orders of magnitude.

But even when $E_F = E_C$, $\langle M \rangle$ is much smaller for electrons than for phonons because for electrons, the BW $\rangle k_B T_L$ which for phonons, BW $\sim k_B T_L$. Most of the modes are occupied for phonons but only a few for electrons.

A question

The lattice thermal conductivity of Bi2Te3 is much lower than that of Si.

$$Bi_2Te_3$$
Silicon $\kappa_L \approx 1$ W/m-K $\kappa_L \approx 150$ W/m-K

$$\kappa_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \left\langle M_{ph} \right\rangle \times \left\langle \left\langle \lambda_{ph} \right\rangle \right\rangle$$

Is it the number of channels? Is it the MFP? Is it a combination of the two? What role does the sound velocity play?

A question

$$\kappa_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \left\langle M_{ph} \right\rangle \times \left\langle \left\langle \lambda_{ph} \right\rangle \right\rangle$$

 $Bi_{2}Te_{3}$ $\kappa_{L} \approx 1 \quad W/m-K$ $\left\langle \left\langle \lambda_{ph} \right\rangle \right\rangle \approx 11 \text{ nm}$ $\left\langle M_{ph} \right\rangle \approx 3.2 \times 10^{17} \text{ m}^{-2}$

Silicon $\kappa_L \approx 150 \quad \text{W/m-K}$ $\langle \langle \lambda_{ph} \rangle \rangle \approx 140 \text{ nm}$ $\langle M_{ph} \rangle \approx 3.3 \times 10^{18} \text{ m}^{-2}$

(Calculations from Jesse Maassen, Dalhousie Univ.) 48

Another question to think about

Assume that the distribution of MFP's is known for a bulk material.

How does the thermal conductivity change as the sample size decreases?

For more information

F. Yang and C. Dames, "Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures," *Phys. Rev. B*, **87**, 035437, 2013.

Jiawei Zhou, Bolin Liao and Gang Chen, "First-principles calculations of thermal, electrical, and thermoelectric transport, properties of semiconductors," Semiconductor Science and Technology, **31**, 043001, 2016.

For information about Landauer Approach

Changwook Jeong, Supriyo Datta, Mark Lundstrom, "Full Dispersion vs. Debye Model Evaluation of Lattice Thermal Conductivity with a Landauer approach," *J. Appl. Phys.* **109**, 073718-8, 2011.

Changwook Jeong, Supriyo Datta, and Mark Lundstrom, "Thermal conductivity of bulk and thin-film silicon: A Landauer approach," *J. Appl. Phys.*, **111**, 093708, 2012.

Changwook Jeong and Mark Lundstrom, "Analysis of Thermal Conductance of Ballistic Point Contacts," *Appl. Phys. Lett.*, **100**, 233109, 2012.

Questions?

$$I = \frac{2q}{h} \int \mathcal{T}_{el}(E) M_{el}(E) (f_1 - f_2) dE$$
$$I_Q = \frac{1}{h} \int (\hbar\omega) \mathcal{T}_{ph}(\hbar\omega) M_{ph}(\hbar\omega) (n_1 - n_2) d(\hbar\omega)$$

$$G = \frac{2q^2}{h} \int \mathcal{T}_{el}(E) M_{el}(E) W_{el} dE$$
$$K_L = \frac{\pi^2 k_B^2 T_L}{3h} \int \mathcal{T}_{ph}(\hbar \omega) M_{ph}(\hbar \omega) W_{ph}(\hbar \omega) d(\hbar \omega)$$

$$\sigma = \frac{2q^2}{h} \langle M_{el} / A \rangle \langle \langle \lambda_{el} \rangle \rangle$$

$$\kappa_{L} = \frac{\pi^{2} k_{B}^{2} T_{L}}{3h} \left\langle M_{ph} / A \right\rangle \left\langle \left\langle \lambda_{ph} \right\rangle \right\rangle$$

