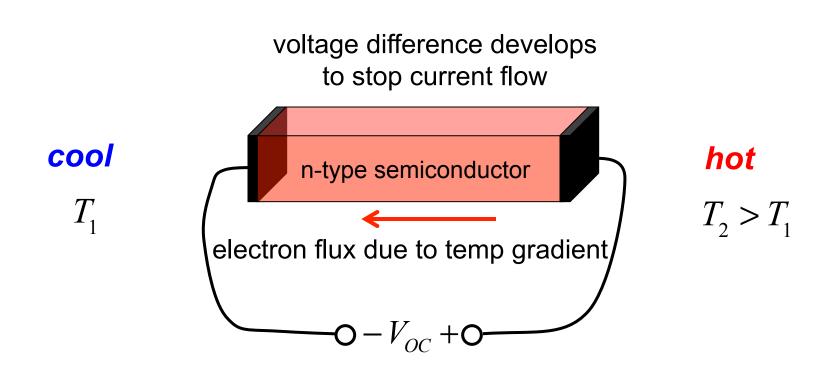
Introduction to Thermoelectricity

Mark Lundstrom

Electrical and Computer Engineering Purdue University West Lafayette, IN USA

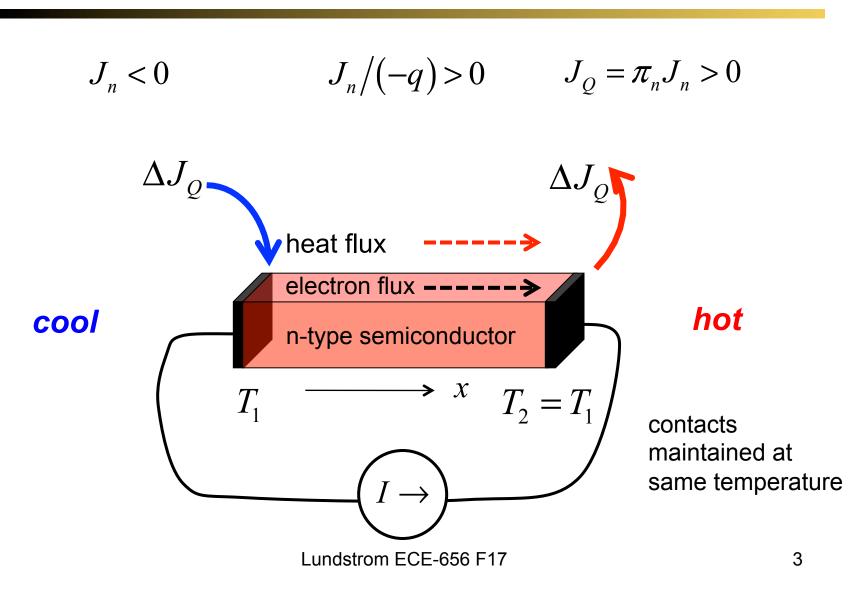
10/24/17

Seebeck effect

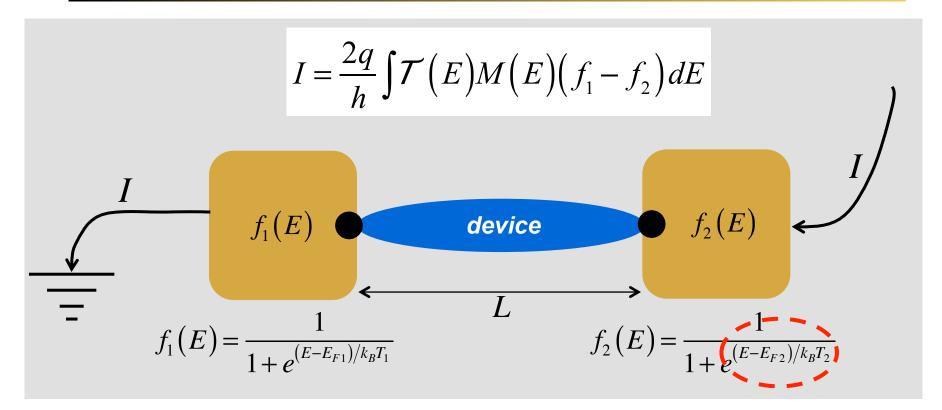


Temperature gradients give rise to an open circuit voltage, which is known as the Seebeck effect. We expect a **positive** voltage for an n-type semiconductor (and **negative** voltage for a p-type semiconductor.)

Peltier effect



Nano to macro device



Driving "forces" for current flow: Differences in Fermi level and differences in temperature.

(In the bulk: Gradients in quasi-Fermi level and temperature.)

The "coupled current equations"

$$I = G\Delta V + S_T\Delta T$$
$$I_Q = -TS_T\Delta V - K_0\Delta T$$
$$\Delta V = RI - S\Delta T$$
$$I_Q = -\pi I - K_e\Delta T$$

$$J = \sigma \mathcal{E} - s_T dT/dx$$
$$J_Q = TS_T \mathcal{E} - \kappa_0 dT/dx$$
$$\mathcal{E} = \rho J + S \frac{dT}{dx}$$
$$J_Q = \pi J - \kappa_e \frac{dT}{dx}$$

(diffusive transport)

Transport equations and coefficients

TE transport equations
$\Delta V = RI - S\Delta T$
$I_Q = -\Pi I - K_e \Delta T$
$\mathcal{E} = \rho J + S \frac{dT}{dx}$
$J_{Q} = \pi J - \kappa_{e} \frac{dT}{dx}$

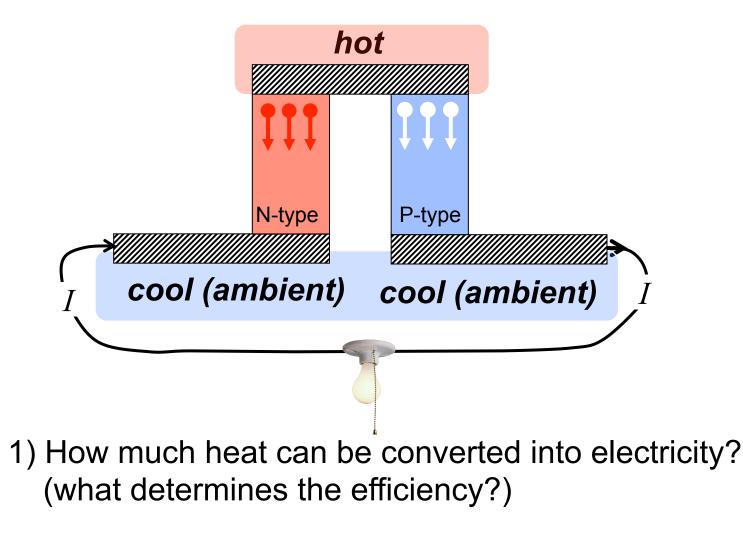
$$ho = 1/\sigma$$
 S
 π κ_e

(diffusive transport) $R = \rho L / A$

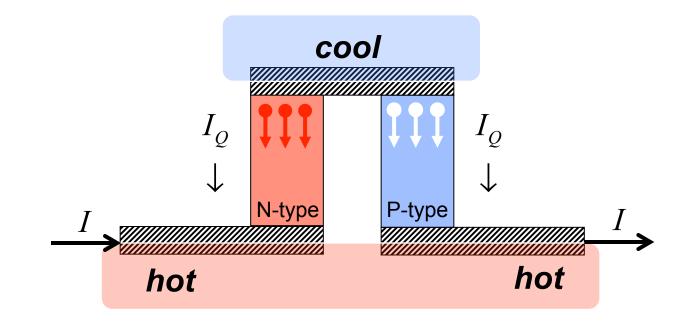
Goals

- 1) To understand the transport **equations** and how to apply them.
- 2) To understand the transport **coefficients** and how they relate to material parameters.

Application: TE power generation



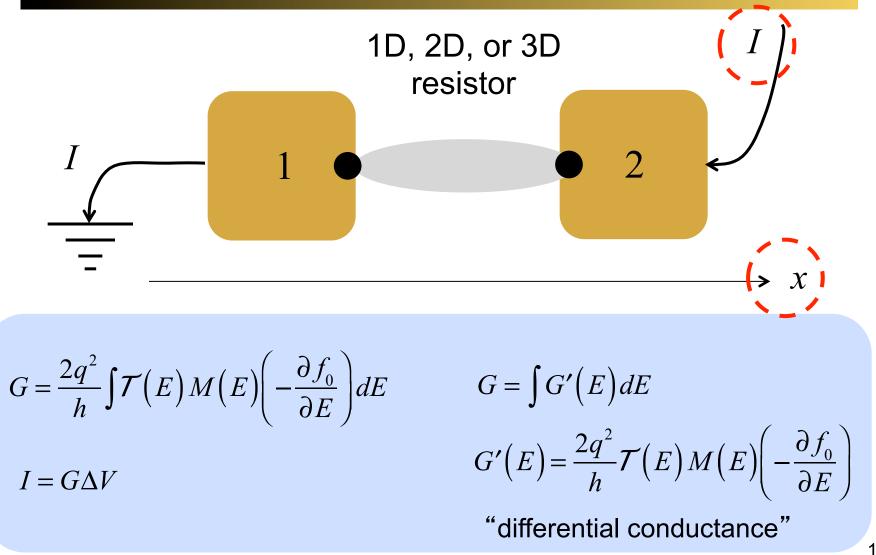
Application: TE cooling



1) What determines the maximum temperature difference?

- 2) How much heat can be pumped?
- 3) What is the coefficient of performance?

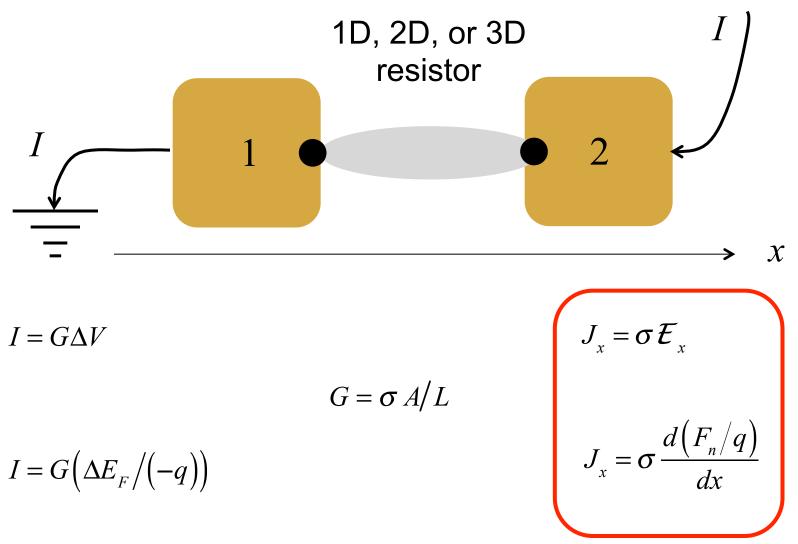
Review of Landauer Approach



Lundstrom ECE-656 F17

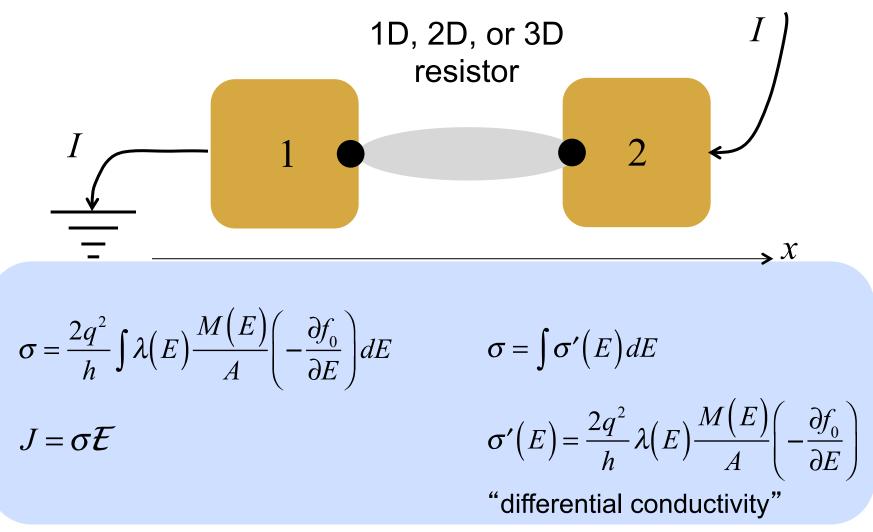
10

Diffusive transport in the bulk



Lundstrom ECE-656 F17

Review of Landauer Approach



Lundstrom ECE-656 F17

Ballistic to diffusive transport

$$\sigma = \frac{2q^2}{h} \int \lambda(E) \frac{M(E)}{A} \left(-\frac{\partial f_0}{\partial E}\right) dE \quad \text{(diffusive)}$$

$$\sigma = G \frac{L}{A} = \frac{2q^2}{h} \int \mathcal{T}(E) L \frac{M(E)}{A} \left(-\frac{\partial f_0}{\partial E}\right) dE$$

(ballistic to diffusive)

$$\mathcal{T}(E) = \frac{\lambda}{\lambda + L}$$
 $\mathcal{T}(E)L = \frac{\lambda L}{\lambda + L} = \left(\frac{1}{\lambda(E)} + \frac{1}{L}\right)^{-1} \equiv \lambda_{app}$

$$J = \sigma_{app} \mathcal{E} \qquad J = \sigma_{app} \frac{d(F_n/q)}{dx} \qquad \sigma_{app} = \frac{2q^2}{h} \int \lambda_{app}(E) \frac{M(E)}{A} \left(-\frac{\partial f_0}{\partial E}\right) dE$$

Lundstrom ECE-656 F17

The plan

Derive the transport equations and transport coefficients.

We will focus on transport in the bulk, but the results are easily generalized to the ballistic and quasi-ballistic regimes.

The first transport equation describes charge transport (the electrical current).

Under isothermal conditions, the electrical current in the bulk is:

 $J_n = \sigma_n d(F_n/q)/dx$ $\sigma_n = \text{conductivity} = 1/\rho_n$ $(1/\Omega-m)$

Alternatively, we can write this in the inverted form as:

 $d(F_n/q)/dx = \rho_n J$

How do these equations change when there is a temperature gradient?

15

Current in the presence of a temp gradient

The answer is:

$$J = \sigma \frac{d(F_n/q)}{dx} - S\sigma \frac{dT}{dx}$$

S is the Seebeck coefficient in V/K.

Alternatively, we can write this equation as:

$$\frac{d\left(F_{n}/q\right)}{dx} = \rho J + S\frac{dT}{dx}$$

(inverted form of the equations)

Questions?

