(Electronic) Heat Current

Mark Lundstrom

Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA
Temperature gradients give rise to an open circuit voltage, which is known as the Seebeck effect. We expect a **positive** voltage for an n-type semiconductor (and **negative** voltage for a p-type semiconductor.)
Peltier effect

\[J_n < 0 \quad J_n/(-q) > 0 \quad J_Q = \pi_n J_n > 0 \]

contacts maintained at same temperature
Transport equations and coefficients

TE transport equations (inverted form)

\[J = \sigma \mathcal{E} - S \sigma \frac{dT}{dx} \]

\[J_Q = TS \sigma \mathcal{E} - \kappa_0 \frac{dT}{dx} \]

\[\mathcal{E} = \rho J + S \frac{dT}{dx} \]

\[J_Q = \pi J - \kappa_e \frac{dT}{dx} \]

TE transport coefficients

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/\sigma)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\pi)</th>
<th>(\kappa_e)</th>
</tr>
</thead>
</table>

(diffusive transport)

\[R = \rho L/A \]

Lundstrom ECE-656 F17
Transport equations and coefficients

\[J = \sigma \mathcal{E} - \sigma S \frac{dT}{dx} \]

\[\mathcal{E} = \rho J + S \frac{dT}{dx} \]

(diffusive transport)

\[\sigma = \int \sigma'(E) dE \]

\[\sigma'(E) = \frac{2q^2}{h} \lambda(E) \frac{M(E)}{A} \left(-\frac{\partial f_0}{\partial E} \right) \]

\[S = -\frac{k_B}{q} \int \left(\frac{E - E_F}{k_B T} \right) \sigma'(E) dE \]

\[\int \sigma'(E) dE \]
1) Introduction
2) **Physics of Peltier Effect**
3) Mathematics of Peltier Effect
4) Wiedemann-Franz Law and Lorenz Number
5) Example: Transport coefficients of Ge
6) Discussion
7) Summary
Peltier effect

Questions:

Why does \(J_Q = \pi_n J_n \) ?
(when the two contacts are at the same temperature)

What determines the Peltier coefficient, \(\pi_n \) ?

Answer: We should draw an energy band diagram.
N-type semiconductor: equilibrium, $V = 0$

$$n(x) = N_C e^{(E_F - E_C)/k_B T} \approx N_D$$

- Metal contact 1
- Metal contact 2
- Ideal contacts (no band bending)
N-type semiconductor: isothermal, $V > 0$

Electrons flow at an energy a little above the bottom of the conduction band.

$E_{F2} = E_{F1} - qV$

$T_2 = T_1$

(elastic scattering only)
N-type semiconductor: isothermal, $V > 0$

Energy absorbed per electron

$$Q = E_C(0) + \Delta_n - E_{F1}$$

Energy dissipated

$$Q = E_C(L) + \Delta_n(L) - E_{F2}$$

Heat is absorbed (emitted) when the average energy at which the heat current flows increases (decreases)
Peltier coefficient

1) Electrons flow from left to right when $V_2 > V_1$.

2) The flux of electrons from left to right is $J_{nx}/(-q)$

3) Each electron absorbs and then carries an amount of heat: $Q = E_C(0) + \Delta_n - E_{F1}$

4) So the heat flux from left to right is:

\[
J_{Q1} = \left[E_C(0) + \Delta_n - E_{F1} \right] \times J_{nx}/(-q) = \pi_n J_{nx}
\]

\[
\pi_n = -\frac{\left[E_C(0) + \Delta_n - E_{F1} \right]}{q}
\]

(less than zero for an n-type semiconductor)
A remarkable result

\[\pi_n = -\frac{(E_C + \Delta_n - E_F)}{q} \]

\[\pi_n = -\frac{(E_J - E_F)}{q} \]

\[S_n = -\frac{(E_J - E_F)}{qT} \]

\[\pi_n = TS_n \quad \text{“Kelvin relation”} \]

The Peltier coefficient is proportional to the difference between the energy at which current flows and the Fermi energy – just as the Seebeck coefficient was.
The physics of Peltier cooling involves the transfer of energy by the movement of electrons across a temperature gradient. When electrons absorb thermal energy, $E - E_{F1}$, they enter contact 1 at the Fermi energy, E_{F1}. In the energy channel, the electrons dissipate energy, $E - E_{F2}$, as they leave contact 2 at the Fermi energy, E_{F2}.

The net power dissipated, P_D, can be calculated as IV. The equation for E_{F2} is $E_{F2} = E_{F1} - qV$, where q is the charge of an electron and V is the voltage applied.

This process is a fundamental aspect of thermoelectric devices, where energy is converted into a temperature difference, leading to cooling effects.
Outline

1) Introduction
2) Physics of Peltier Effect
3) Mathematics of Peltier Effect
4) Example: Transport coefficients of Ge
5) Discussion
6) Summary
Nano to macro device

\[I = \frac{2q}{h} \int \mathcal{T}(E) M(E)(f_1 - f_2) \, dE \]

\[f_1(E) = \frac{1}{1 + e^{(E-E_{F1})/k_B T_1}} \]

\[f_2(E) = \frac{1}{1 + e^{(E-E_{F2})/k_B T_2}} \]

\[M(E) = M_{3D}(E) A = A \frac{\hbar}{4} \langle v_x^+ \rangle D_{3D}(E) \]

\[\mathcal{T}(E) = \frac{\lambda(E)}{\lambda(E) + L} \]
Charge current \rightarrow heat current

$$I = \frac{2q}{h} \int \mathcal{T}(E)M(E)(f_1 - f_2)\,dE$$

$$q \rightarrow (E - E_F)$$

$$I_Q = \frac{2}{h} \int (E - E_F)\mathcal{T}(E)M(E)(f_1 - f_2)\,dE$$

Note: if $E_C > E_{F1}$, then electrons in the contact must absorb energy to flow in one of the energy channels in the device.
Heat current

\[I'_{Q_1}(E) = \frac{2(E - E_{F_1})}{h} \mathcal{T}(E) M(E) (f_1 - f_2) \]

\[I'_{Q_2}(E) = \frac{2(E - E_{F_2})}{h} \mathcal{T}(E) M(E) (f_1 - f_2) \]
the math

\[I'_Q(E) = \frac{2(E - E_{F1})}{h} \mathcal{T}(E) M(E) (f_1 - f_2) \]

\[(f_1 - f_2) \approx \left(- \frac{\partial f_0}{\partial E} \right) q \Delta V - \left(- \frac{\partial f_0}{\partial E} \right) \frac{E - E_F}{T} \Delta T \]

\[I'_Q(E) = - TS(E) \sigma(E) \Delta V - K'_0 (E) \Delta T \]

\[K'_0 (E) = \frac{2 \left(E - E_F \right)^2}{h} \mathcal{T}(E) M(E) \left(- \frac{\partial f_0}{\partial E} \right) \]

\[I_Q = \int I'_Q(E) dE \]

\[K_0 = \int K'_0 (E) dE \]
The result

\[I = G \Delta V + SG \Delta T \]
\[I_Q = -TSG \Delta V - K_0 \Delta T \]
\[\Delta V = RI - S \Delta T \]
\[I_Q = -\Pi - K_e \Delta T \]

\[G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE \]
\[S = -\int \frac{(E - E_F)}{qT} G'(E) dE / \int G'(E) dE \]
\[K_0 = \int \frac{(E - E_F)^2}{q^2T} G'(E) dE \]
\[K_e = K_0 - \Pi SG \]
\[\Pi = TS \]
3D bulk semiconductors

\[J = \sigma \mathcal{E} - S\sigma \frac{dT}{dx} \]
\[J_Q = TS_T \mathcal{E} - \kappa_0 \frac{dT}{dx} \]
\[\mathcal{E} = \rho J + S \frac{dT}{dx} \]
\[J_Q = \pi J - \kappa_e \frac{dT}{dx} \]

(diffusive transport)

\[\sigma = \int \sigma'(E) dE \]
\[\sigma'(E) = \frac{2q^2}{h} \lambda(E) \frac{M(E)}{A} \left(-\frac{\partial f_0}{\partial E} \right) \]
\[S = -\int \frac{(E - E_F)}{qT} \sigma'(E) dE \left/ \int \sigma'(E) dE \right. \]
\[\kappa_0 = \int \frac{(E - E_F)^2}{q^2T} \sigma'(E) dE \]
\[\pi = TS \]
\[\kappa_e = \kappa_0 - \pi S\sigma \]
Both electrons and lattice vibrations carry heat – we have been discussing the electronic part.

In metals, heat conduction by electrons dominates: $\kappa_e >> \kappa_L$

In semiconductors, lattice vibrations dominate: $\kappa_L >> \kappa_e$
Outline

1) Introduction
2) Physics of Peltier Effect
3) Mathematics of Peltier Effect
4) Wiedemann-Franz Law and Lorenz Number
5) Example: Transport coefficients of Ge
6) Discussion
7) Summary
Coupled current equations

\[\mathcal{E} = \rho J + S \frac{dT}{dx} \]

\[J_{\varphi} = \pi J - \kappa_e \frac{dT}{dx} \]

Kelvin relation

\[\pi = TS \]

("Onsager relations" for coupled flows)

We expect a relation between the electrical conductivity and the electronic thermal conductivity, but it is not fundamental; it depends on material details.
Electronic thermal conductivity

\[
\kappa_0 = \int_{-\infty}^{+\infty} \frac{(E - E_F)^2}{q^2 T} \sigma'(E) dE = \frac{2q^2}{h} \frac{\lambda(E)}{M(E) / A} \left(-\frac{\partial f_0}{\partial E} \right)
\]

\[
\kappa_e = \kappa_0 - T\sigma S^2
\]

\[
\kappa_0 = T \left(\frac{k_B}{q} \right)^2 \left\langle \left(\frac{E - E_F}{k_B T} \right)^2 \right\rangle \sigma
\]

\[
S^2 = \left(\frac{k_B}{q} \right)^2 \left\langle \left(\frac{E - E_F}{k_B T} \right)^2 \right\rangle
\]

\[
\kappa_e = T\sigma \left(\frac{k_B}{q} \right)^2 \left\{ \left\langle \left(\frac{E - E_F}{k_B T} \right)^2 \right\rangle - \left\langle \left(\frac{E - E_F}{k_B T} \right) \right\rangle^2 \right\} = T\sigma \mathcal{L}
\]

Wiedemann-Franz “Law”
The Lorenz number depends on details of bandstructure, scattering, dimensionality, and degree of degeneracy, but for a constant mfp and parabolic energy bands, it is useful to remember:

\[
\mathcal{L} \approx 2 \left(\frac{k_B}{q} \right)^2 \quad \text{non-degenerate, 3D semiconductors}
\]

\[
\mathcal{L} \approx \frac{\pi^2}{3} \left(\frac{k_B}{q} \right)^2 \quad \text{fully degenerate e.g. 3D metals}
\]

a “rule of thumb” not a “law of nature”

Lorenz number for a single channel

\[\kappa_e = T \sigma \left(\frac{k_B}{q} \right)^2 \left\{ \left\langle \left(\frac{E - E_F}{k_B T} \right)^2 \right\rangle - \left\langle \left(\frac{E - E_F}{k_B T} \right) \right\rangle^2 \right\} = T \sigma \mathcal{L} \]

\[M(E) = M_0 \delta(E - E_C) \]

\[\left\langle \left(\frac{E - E_F}{k_B T} \right)^2 \right\rangle = \left\langle \left(\frac{E - E_F}{k_B T} \right) \right\rangle^2 \]

\[\mathcal{L} = 0 \]

How can we understand this result physically?
If there is only a single channel, then if it is open-circuited, no electrons can flow. There is no charge transport and no heat transport.
Bipolar conduction

\[M^{\text{tot}}(E) = M^{C}(E) + M^{V}(E) \]

\[\sigma_{\text{tot}} = \sigma_n + \sigma_p \]

\[S_{\text{tot}} = \frac{S_n \sigma_n + S_p \sigma_p}{\sigma_{\text{tot}}} \]
Bipolar conduction

\[\sigma_{tot} = \sigma_n + \sigma_p \]

\[S_{tot} = \frac{S_n \sigma_n + S_p \sigma_p}{\sigma_{tot}} \]

\[\kappa_e = \kappa_{en} + \kappa_{ep} + T \left(\frac{\sigma_n \sigma_p}{(\sigma_n + \sigma_p)} \right) \left(S_p - S_n \right)^2 \]

\[\mathcal{L} = \frac{\kappa_e}{\sigma_{tot} T} \]

\[\mathcal{L} = \frac{\kappa_{en}}{\sigma_n T (\sigma_n + \sigma_p)} + \frac{\kappa_{ep}}{\sigma_p T (\sigma_n + \sigma_p)} + \sigma_n \sigma_p \left(\frac{S_p - S_n}{\sigma_n + \sigma_p} \right)^2 \]
Lorenz number vs. Fermi level at 300 K

Silicon ($E_G = 1.1 \text{ eV}$)

Bi$_2$Te$_3$ ($E_G = 0.15 \text{ eV}$)

(Computation by Dr. Xufeng Wang, Purdue University, Oct. 2017.)
Physics (unipolar)

Holes flowing down the temperature gradient

Holes flowing up the QFL gradient

\[T_1 > T_0 \]

\[I = 0 \]
Holes and electrons flow at the same rate to the left contact, where they recombine. An energy of E_G has been transported by the e-h pair to the contact.

Holes flowing down the temperature gradient

Net electron flow

Net hole flow

Holes flowing up the QFL gradient

$T_1 > T_0$

$I = 0$

$I = 0$

E_F

χ
Outline

1) Introduction
2) Physics of Peltier Effect
3) Mathematics of Peltier Effect
4) Wiedemann-Franz Law and Lorenz Number
5) Example: Transport coefficients of Ge
6) Discussion
7) Summary
Example: TE transport parameters of n-Ge

\[\rho_n \quad \Omega \cdot m \]
\[S_n \quad V/K \]
\[\pi_n \quad W/A = V \]
\[\kappa_n \quad W/m \cdot K \]

\[E = \rho_n J_n + S_n \frac{dT}{dx} \left(\frac{V}{m} \right) \]
\[J_Q = \pi_n J_n - \kappa_n \frac{dT}{dx} \left(W \right) \]

\[N_D = 10^{15} \text{ cm}^{-3} \]
\[T = 300 \text{ K} \]
\[\mu_n = 3200 \text{ cm}^2/\text{V-s} \]

\[n_0 = N_C e^{(E_F-E_c)/k_BT} \approx N_D \]
\[N_C = 1.04 \times 10^{19} \text{ cm}^{-3} \]

Lundstrom ECE-656 F17
TE transport parameters of n-Ge: resistivity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_n</td>
<td>$\Omega\cdot\text{cm}$</td>
</tr>
<tr>
<td>S_n</td>
<td>V/K</td>
</tr>
<tr>
<td>π_n</td>
<td>$\text{W/A} = \text{V}$</td>
</tr>
<tr>
<td>κ_n</td>
<td>W/m-K</td>
</tr>
</tbody>
</table>

\[
\mathcal{E} = \rho_n J_n + S_n \frac{dT}{dx} \left(\frac{\text{V}}{\text{m}}\right)
\]

\[
J_Q = \pi_n J_n - \kappa_n \frac{dT}{dx} \left(\text{W}\right)
\]

\[
N_D = 10^{15} \text{ cm}^{-3} \approx n_0
\]

\[
\mu_n = 3200 \text{ cm}^2/\text{V-s}
\]

\[
\sigma_n = n_0 q \mu_n \quad \text{S/cm}
\]

\[
\rho_n = \frac{1}{n_0 q \mu_n} \approx 2 \text{ } \Omega\cdot\text{cm}
\]
TE transport parameters of n-Ge: Seebeck coeff.

\[\rho_n = 2 \text{ } \Omega \text{-cm} \]
\[S_n = \text{V/K} \]
\[\pi_n = \text{W/A} = \text{V} \]
\[\kappa_n = \text{W/m-K} \]

\[E = \rho_n J_n + S_n \frac{dT}{dx} \left(\frac{\text{V}}{\text{m}} \right) \]
\[J_Q = \pi_n J_n - \kappa_n \frac{dT}{dx} \left(\text{W} \right) \]

\[N_D = 10^{15} \text{ } \text{cm}^{-3} \approx n_0 \]
\[n_0 = N_C e^{(E_F - E_c)/k_B T} \]
\[N_C = 1.04 \times 10^{19} \text{ } \text{cm}^{-3} \]
\[T = 300 \text{ K} \]

\[\left(E_c - E_F \right)/k_B T \approx \ln \left(N_C / n_0 \right) \approx 9.3 \]
\[\delta_n \approx 2 \text{ (non-degenerate, 3D)} \]

\[S_n = \left(\frac{k_B}{-q} \right) \left\{ \frac{\left(E_c - E_F \right)}{k_B T} + \delta_n \right\} \approx -970 \text{ } \mu \text{V/K} \]
TE transport parameters of n-Ge: Peltier coeff.

\[\rho_n = 2 \, \Omega \cdot \text{cm} \]
\[S_n = -970 \, \text{V/K} \]
\[\pi_n = \frac{\text{W}}{\text{A}} = \text{V} \]
\[\kappa_n = \frac{\text{W}}{\text{m} \cdot \text{K}} \]

\[\mathcal{E} = \rho_n J_n + S_n \frac{dT}{dx} \left(\frac{\text{V}}{\text{m}} \right) \]

\[J_Q = \pi_n J_n - \kappa_n \frac{dT}{dx} \left(\text{W} \right) \]

\[\pi_n = TS_n \approx -0.3 \, \text{V} \]
TE transport parameters of n-Ge: Peltier coeff.

\[\rho_n = 2 \ \Omega \text{-cm} \]
\[S_n = -970 \ \text{V/K} \]
\[\pi_n = -0.3 \ \text{W/A} = \text{V} \]
\[\kappa_n = \text{W/m-K} \]

\[\mathcal{E} = \rho_n J_n + S_n \frac{dT}{dx} \left(\frac{\text{V}}{\text{m}} \right) \]
\[J_Q = \pi_n J_n - \kappa_n \frac{dT}{dx} \left(\text{W} \right) \]

\[\frac{\kappa_n}{T \sigma_n} = L \] (Lorenz number)
\[L \approx 2 \left(\frac{k_B}{q} \right)^2 \] (non-degenerate, 3D)
\[\sigma_n = 1/\rho_n \]

\[\kappa_n = 2.2 \times 10^{-4} \ \text{W/m-K} \]
TE transport parameters of n-Ge:

\(\rho_n = 2 \ \Omega\text{-cm} \)

\(S_n = -970 \ \text{V/K} \)

\(\pi_n = -0.3 \ \text{W/A = V} \)

\(\kappa_n = 2.2 \times 10^{-4} \ \text{W/m-K} \)

\[\mathcal{E} = \rho_n J_n + S_n \frac{dT}{dx} \left(\frac{\text{V}}{\text{m}} \right) \]

\[J_Q = \pi_n J_n - \kappa_n \frac{dT}{dx} \left(\text{W} \right) \]

All of these parameters depend on the temperature and carrier concentration (Fermi level).

Note also:

\(\kappa_L = 58 \ \text{W/m-K} \gg \kappa_n \)
1) Introduction
2) Physics of Peltier Effect
3) Mathematics of Peltier Effect
4) Wiedemann-Franz Law and Lorenz Number
5) Example: Transport coefficients of Ge
6) Discussion
7) Summary
Origin of Peltier cooling

E_{F1}

T_{L1}

E

λ_E

energy channel

"evaporation" of the electron liquid

f_0

x
“It is interesting that the thermoelectric cooling and heating regions are contained in the highly doped contact layers.”

Outline

1) Introduction
2) Physics of Peltier Effect
3) Mathematics of Peltier Effect
4) Wiedemann-Franz Law and Lorenz Number
5) Example: Transport coefficients of Ge
6) Discussion
7) Summary
The TE transport equations

\[J = \sigma \mathcal{E} - \sigma S \frac{dT}{dx} \]

\[J_Q = T \sigma S \mathcal{E} - \kappa_0 \frac{dT}{dx} \]

\[\mathcal{E} = \rho J + S \frac{dT}{dx} \]

\[J_Q = \pi J - \kappa_e \frac{dT}{dx} \]

(diffusive transport)

\[\sigma = \int \sigma'(E) dE \]

\[\sigma'(E) = \frac{2q^2}{h} \lambda(E) \frac{M(E)}{A} \left(- \frac{\partial f_0}{\partial E} \right) \]

\[S = -\frac{k_B}{q} \int \left(\frac{E - E_F}{k_B T} \right) \sigma'(E) dE \left/ \int \sigma'(E) dE \right. \]

\[\pi = TS \]

\[\kappa_0 = T \left(\frac{k_B}{q} \right)^2 \int \left(\frac{E - E_F}{k_B T} \right)^2 \sigma'(E) dE \]

\[\kappa_e = \kappa_0 - \pi S \sigma \]
1) Introduction
2) Physics of Peltier Effect
3) Mathematics of Peltier Effect
4) Wiedemann-Franz Law and Lorenz Number
5) Example: Transport coefficients of Ge
6) Discussion
7) Summary