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The BTE
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Steady-state BTE with no B-fields

aa—{+ﬁovrf+ﬁ’e-fo:éfeﬁovrf—qf°vpf=éf

We have previously solved this equation for no spatial
gradients and found an expression for the mobility.

We also previously solved this equation for no electric
fleld and found an expression for the diffusion
coefficient.

What if there is both an electric field and a spatial
gradient (and a temperature gradient)?
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Steady-state BTE with no B-fields

VeV f— qEVf—

f(P)=1(B)+0f(p) \

>>|5f no B-fields for now

F =—qE

“near-equilibrium”
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Solving the near eq., s.s BTE

5°Vrf—qf-fo=—5];—(ﬁ)
VeV, fs _q?'vpfs = _5];(?)

m

Sf(p)=-1,0V, f;+q1,E +V f,

Vrf = Vr\fS

V.f=V f
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BTE solution
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Generalized force

4 )

_ (95, 7
6f—7:m( BE)U F

F=-VFE+T[E.+E(k)-F,]V, 1
\_ (T)

The two forces driving currents are:

J

1) gradients in the QFL
2) gradients in (inverse) temperature.

According to the Landauer Approach (f, — f,) produces
currents. Differences in Fermi level and temperature cause

differences in f.
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What next?




Moments
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J,(F)=

Current (symbolic notation)

1 ol = of, \
5;(—q)vc3f(r,k) Sf = r( an

7=V E+T[E+EW0)-E]V, (1)

(‘Q);Tm (_%j(ﬁﬁ)-f tensor
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Current (indicial notation)

—SJUOf f_ r-n TI:EC ( ) n:l r(] )
1
aESjvjf; Ji=—0,F,1 T[EC H1 ( ) ”] i(Y j
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O Z(—q)vich(?,E)

Current (indicial notation)

oE

a;(_Q)viTm (_%)vjf;’
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Conductivity tensor
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Coupled charge and heat current equations

a2 )
electrical current:
dTl oT
t=pJ+S . i = Py T, axj

heat current (electronic):

dT ,oT
— e J =nJ —K —
JQ wJ Ke I Oi iY ij axj

heat current (lattice):

_ [T _ | 9T
=" dx 7=% E)xj
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B-field dependent transport
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Cubic semiconductors:

P (B) = p05ij + Pl €y By ...
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Form of the tensors (cubic semiconductors)

Py (B)=pud; + Pobty€yB + .
E,=p,(B)J,+S,(B)o,T S, (B)=5,0,+S.€,B,+.
J =7tlj(l§)fj—K;(l§)8jT EU(E) m,0, + €, B, +..

K?(E) K0, +K,E.B, +..

ijk

See Smith, Janek, and Adler, Chapter 9, for expressions for the B-field
dependent transport tensors.
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Tl

B-field dependent Seebeck coefficient

_Isothermal in
5.z the y-direction
7
JT, /ay =0
e
n-type semiconductor

C )
-\

AV = SAT?
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Magneto-Seebeck effect (isothermal in y)

E,=p,(B)J,+S,(B)o,T £, =p,(B)J,+S,(B)o,T
E,.=S,.(B)o,T

S,(B)=S5,0,+5¢,B,

£ =8,0T
B-field has no St (B ) =5y +5&.. B,
effect (to first )
order) S.(B)=S5,
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Magneto-Seebeck effect (adiabatic in y)

£ = p,(B)J,+5,(B)a T £,=5,(B)ar

S, (B)= 5,8, +5,B,

ijk

£,.=5,0.T+S8B0,T

S e
Ex:( L+ 21 Bj]axT
KO

£ =S 0T

app = x

Je=0=- K;j(f})&jT

K; =K,0, + K €,B,

=—K8T K/€,.0TB

yXz X

— _1
ayT e BzaxT Lundstrom ECE-656 F17 24
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Comments

See Lundstrom, p. 179 for table listing other effects
involving a transverse B-field.

(Also includes effects to second order in B-field)
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1)

2)

Summary

Under near-equilibrium conditions with the RTA,
the BTE can be solved to find the probability that
states in the device are occupied.

From the solution, we can determine the electric
and heat currents. For diffusive transport, the
results are equivalent to the Landauer approach.

The BTE is convenient for anisotropic transport,
for including B-fields, for resolving transport in
space, and for off-equilibrium transport, but
ballistic transport is hard.
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Summary

4) When the RTA cannot be used, the near-equilibrium
transport equations still have the same form, but to
evaluate the transport coefficients, numerical methods
are necessary.

See:

D.L. Rode, “Low-field electron transport,” in
Semiconductors and Semimetals, Vol. 10, pp. 1-89,
ed. by R.K. Willardson and A.C. Beer, Academic
Press, NY, 1975.
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Summary

of _ :
¥+U.Vrf+}7€.vpf:Cf

This is a six-dimensional integro-differential equation
for Kr, p, t).

For near-equilibrium conditions in bulk semiconductors,
analytical solutions are (sometimes) possible.
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Summary

- of . . .
f(r,p,t) a—{+chrf+Feonf=Cf

Far from equilibrium, solving the BTE becomes even
more difficult. The RTA cannot be used, and devices
have complicated structures with rapidly varying fields.

Some problems can be solved by special techniques
(e.g. Monte Carlo simulation), but solving the BTE in 3D
(or even 2D) is usually not possible.

Is there a better way?
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