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NAME:______________________________________	 	 PUID:	______________________________________	
	

	
ECE	656	Exam	3	SOLUTIONS:	Fall	2017	

December	12,	2017	
Mark	Lundstrom	
Purdue	University	

	
	
This	is	a	closed	book	exam.		You	may	use	a	calculator	and	the	formula	sheet	at	the	end	of	
this	exam.		Only	the	Texas	Instruments	TI-30X	IIS	scientific	calculator	is	allowed.	
	
There	are	four	equally	weighted	questions.	To	receive	full	credit,	you	must	show	your	
work	(scratch	paper	is	attached).	
	
The	exam	is	designed	to	be	taken	in	75	minutes.	
	
Be	sure	to	fill	in	your	name	and	Purdue	student	ID	at	the	top	of	the	page.	
	
DO	NOT	open	the	exam	until	told	to	do	so,	and	stop	working	immediately	when	time	
is	called.	
	
The	last	two	pages,	which	list	equations	may	be	removed,	if	you	wish.	
	
	
100	points	possible,	25	per	question	

	
1)		25	points	 	 2a)		5	points	 	 3a)		5	points	 	 4a)		10	points	

	 						2.5pts	each	 2b)		5	points		 	 3b)		10	points		 4b)		5	points	
	 	 	 	 2c)		10	points		 3c)			5	points	 	 4c)		10	points	

	 	 	 	 2d)		5	points	 	 3d)			5	points	
	
	
	
	

-------------------------	Course	policy		-------------------------	
	
I	understand	that	if	I	am	caught	cheating	in	this	exam,	I	will	earn	an	F	for	the	course	and	be	
reported	to	the	Dean	of	Students.	
	
	
	
Read	and	understood:	 ______________________________________________	
	 	 	 	 	 	 signature	
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Exam	3	Solutions:	ECE	656	Fall	2017	
	
1a)	 When	we	write	the	recombination	term	in	the	various	balance	equations	as	

  
Rφ = nφ − nφ

0( ) τφ ,	sometimes	a	term	corresponding	to	 nφ 	appears	and	a	term	

corresponding	to	its	equilibrium	value,  
nφ

0 ,	does	not	appear.		When	does	it	not	
appear?	

	
a)	 Under	steady-state	conditions.		
b)	 Under	spatially	uniform	conditions.	
c)	 When	the	balance	equation	corresponds	to	a	moment	higher	than	2.	
d)		When	the	balance	equation	corresponds	to	a	moment	higher	than	3.	
e)		When	the	quantity	in	the	balance	equation	is	a	flux.	

	
	
1b)	 When	we	write	a	drift-diffusion	equation	in	the	form,	   

Jnj = nqµnE j + 2 3( )µn ∂W ∂x j ,	
what	assumption	are	we	making?	

	
a) Non-degenerate	carrier	statistics.	
b) The	temperature	does	not	vary	with	position.	
c) The	electron	temperature	is	equal	to	the	lattice	temperature.	
d) The	kinetic	energy	is	equally	distributed	between	the	three	degrees	of	

freedom.	
e) Only	that	the	BTE	is	valid.	

	
	
1c)	 What	does	moment	equation	does	   

φ !p( ) =υx p2 2m*( ) 	give	us?	
	

a) The	carrier	continuity	equation.	
b) The	carrier	flux	equation.	
c) The	carrier	energy	balance	equation.	
d) The	carrier	energy	flux	equation.	
e) The	carrier	energy	squared	continuity	equation.	

	
1d)	 When	simulating	 

r t( ), p t( )( ) ,	in	phase	space	by	the	Monte	Carlo	approach,	which	of	
the	following	is	true?		

	
a)  
r t( )

	
is	continuous	and	 

p t( ) 	is	continuous.	
b)  
r t( )

	
is	discontinuous	and	 

p t( ) 	is	continuous.	
c)  
r t( )

	
is	continuous	and	 

p t( ) 	is	discontinuous.	
d)  
r t( )

	
is	discontinuous	and	 

p t( ) 	is	discontinuous.	
e) 	None	of	the	above	
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Exam	3	Solutions:	ECE	656	Fall	2017	
	
1e)	 What	is	“self	scattering”	in	a	Monte	Carlo	simulation?	
	

a) A	many	body	effect	in	which	an	electron	interacts	with	itself.	
b) An	electron-electron	scattering	event	in	which	an	electron	scatters	from	another	

electron.	
c) An	electron-electron	scattering	event	in	which	an	electron	scatters	from	the	

entire	plasma	of	all	the	electrons.	
d) A	mathematical	technique	that	simplifies	the	computation	of	free-flight	

times.	
e) A	mathematical	technique	that	simplifies	the	computation	of	the	final	scattering	

state.	
	
	

	
1f)	 In	practice,	one	commonly	extends	the	near-equilibrium	drift-diffusion	equation	to	

high-fields	by	replacing	the	mobility	and	diffusion	coefficients	by	electric	field	
dependent	quantities,	as	in	  Jnx = nqµn E( )E x + qDn E( )dn dx .	What	assumption	is	
necessary	to	write	the	DD	equation	in	this	form?	

	
a) Parabolic	energy	bands.	
b) Non-degenerate	carrier	statistics.	
c) The	microscopic	relaxation	time	approximation.	
d) That	the	energy	relaxation	time	is	shorter	than	the	momentum	relaxation	time.	
e) That	the	shape	of	the	distribution	at	the	particular	location,	whatever	it	is,	

depends	only	on	the	electric	field	at	that	location.	
	
	
1g)	 In	the	classic	description	of	the	velocity	vs.	electric	field	characteristic	in	bulk	Si,	

   
υd  =µn0E 1+ E E C( )2

,	approximately	what	is	the	magnitude	of	 E C ?	

a)	  ≈ 0.1kV cm 	.	
b)	  ≈1kV cm 	.	
c)	  ≈10 kV cm 	.	
d)		  ≈100 kV cm 	.	
e)	  ≈1000 kV cm 	.	
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Exam	3	Solutions:	ECE	656	Fall	2017	
	
1h)	 What	is	meant	by	the	term,	“non-local”	semiclassical	transport.	

	
a)	 Transport	that	cannot	be	described	by	a	DD	equation	with	a	field-dependent	

mobility	and	diffusion	coefficient.	
b)	 Steady-state	transport	in	an	electric	field	that	varies	more	rapidly	in	space	than	

the	energy	relaxation	length,	where	 Te 	is	the	electron	temperature.		
c)	 Transient	transport	in	an	electric	field	that	varies	more	rapidly	in	time	than	the	

energy	relaxation	time.		
d)	 All	of	the	above.	
e)	 None	of	the	above.	

	
	
1i)	 Under	what	conditions	does	velocity	overshoot	occur	for	a	rapidly	varying	electric	

field?	
a) When	transport	is	ballistic.	
b) When	transport	is	quasi-ballistic.	
c) When	the	momentum	relaxation	time	is	much	shorter	than	the	energy	

relaxation	time.	
d) When	the	momentum	relaxation	time	is	much	longer	than	the	energy	relaxation	

time.	
e) When	the	momentum	relaxation	time	is	nearly	equal	to	the	energy	relaxation	

time.	
	
	
1j)	 Which	of	the	following	is	true	about	a	ballistic	device	with	two,	ideal	Landauer	

contacts	at	different	voltages?	
	

a)	 The	distribution	function	in	the	device	is	a	Fermi-Dirac	distribution	with	the	
average	Fermi	level	of	the	two	contacts.		

b)	 The	distribution	function	in	the	device	is	a	Fermi-Dirac	distribution	with	the	
Fermi	level	of	the	contact	with	the	more	positive	potential.	

c)	 The	distribution	function	in	the	device	is	a	Fermi-Dirac	distribution	with	the	
Fermi	level	of	the	contact	with	the	more	negative	potential.	

d)	 Each	state	in	the	device	is	in	equilibrium	with	one	of	the	two	contacts.	
e)	 Each	state	in	the	device	is	in	equilibrium	with	both	the	two	contacts	
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Exam	3	Solutions:	ECE	656	Fall	2017	
	
2) Monte	Carlo	simulations	of	high-field	transport	in	bulk	silicon	with	an	electric	field	of	

100,000	V/cm	show	the	following	results	for	the	average	velocity	and	kinetic	energy:	

  υd = υ = 1.04×107 cm/s 		

  u = KE = 0.364 eV 	
For	this	problem,	you	may	assume	a	simple	parabolic	band	with	an	effective	mass	of	

  m
* = mC

* = 0.26m0 .	
	
2a)	 Estimate	the	average	momentum	relaxation	time,	 τ m .	A	numerical	answer	is	

required.	
	
Solution:	

   µn = υ E = 104 cm2 /V-s 	

  
µn =

q τ m

mc
*

,	
where	  mc

* 	is	the	conductivity	effective	mass.		Use	MKS	units	for	the	calculation:	

  
τ m = q

µnmc
* =

µnmc
*

q
= 104×10−4 × 0.26× 9.11×10−31

1.6×10−19 1.54×10−14 	

	

  
τ m = 1.54×10−14 s 	

	
2b)	 Estimate	the	average	energy	relaxation	time,	 τ E .	A	numerical	answer	is	

required.	
	
Solution:	

From	the	energy	balance	equation:	

   
JxE x = nq υ E x =

n u − u0( )
τ E 	

   
τ E =

u − u0( )
q υ E x 	

  

u0

q
= 1.5

kBTL

q
= 0.039

	

   
τ E =

u − u0( )
q υ E x

=
0.364− 0.039( )

1.04×107 ×105 = 0.313×10−12

	

  
τ E = 0.3 ps
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Exam	3	Solutions:	ECE	656	Fall	2017	
	
2c)	 Estimate	the	drift	energy	in	electron	volts.	A	numerical	answer	is	required.	
	
Solution:	
	

  
Edr =

1
2

m*υd
2 = 0.5 0.26( ) 9.11×10−31( ) 1.04×105( )2

= 1.28×10−21 J 		

  
Edr eV( ) = 1.28×10−21

q
= 8.01×10−3 eV 	

	

  
Edr eV( ) = 8.01×10−3 eV 	

	
	
	
	
2d)	 Estimate	the	thermal	energy	in	electron	volts.	A	numerical	answer	is	required.	
	
Solution:	
	

From	the	formula	sheet:		
  
u = 1

2
m*υd

2 + 3
2

kBTe 	

	

  
3
2

kBTe = u − 1
2

m*υd
2 = 0.364− 0.008 = 0.356

	
	

  

3
2

kBTe = 0.356 eV 	

	
Virtually	all	of	the	energy	is	thermal	energy.	
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Exam	3	Solutions:	ECE	656	Fall	2017	
 
3)	 When	deriving	the	momentum	balance	equation	in	3D,	a	tensor,	

	

 
Wij =

1
Ω

υi p j
2

f r , p,t( )
p
∑ 	

occurs.		This	question	is	about	the	diagonal	component	of	the	tensor,	 Wxx .	You	may	
assume	a	simple,	parabolic	energy	band	and	spatial	variation	in	the	x-direction	only.	

	
	
3a)	 Use	the	balance	equation	prescription	to	obtain	an	expression	for	the	x-directed	flux	

associated	with	 Wxx .	
	
Solution:	
	

	
   
Fφx ≡

1
Ω

1
2

m*υx
2⎛

⎝⎜
⎞
⎠⎟
υx f x, !p,t( )

p
∑ = FWxx

.	

	

 
FWxx

	is	a	flux	of	the	quantity,	 Wxx .	It	can	also	be	written	as	

	

  
F

Wxx

≡ 1
Ω

1
2

m*υx
2⎛

⎝⎜
⎞
⎠⎟
υx f

p
∑ = n

1
2

m* υx
3 	

	
	
3b)	 Use	the	balance	equation	prescription	to	obtain	an	expression	for	the	“generation	

rate”	associated	with	 Wxx .	
	
Solution:	

 
Gφ = −qE x

1
Ω

∂φ
∂px

f
p
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	

The	term	inside	the	sum	is	

∂φ
∂px

=
∂ 1
2
m*υx

2⎛
⎝⎜

⎞
⎠⎟

∂px
= 1
2m*

∂ px
2( )

∂px
= υx 	

	 so	we	find	

    
Gφ = −qE i

1
Ω

υx f
!p
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= JnxE x 	
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Exam	3	Solutions:	ECE	656	Fall	2017	
	
3c)	 Write	down	an	expression	for	the	“recombination	rate”	associated	with	 Wxx .	
	
Solution:	
	

  

Rφ ≡
nφ − nφ

0

τφ

=
Wxx −Wxx

0

τWxx 	 	
  
Wxx

0 = n0

kBTL

2
	

	
	
3d)	 Write	down	the	total	balance	equation	for	 Wxx ,	and	explain	what	would	need	to	be	

done	in	order	to	solve	this	equation	in	combination	with	the	first	balance	equation	
(the	continuity	equation)	and	the	second	balance	equation	(the	momentum	balance	
equation).		

	
Solution:	
	

   

∂Wxx

∂t
= − d

dx
FWxx
( ) + JnxE x −

Wxx −Wxx
0

τWxx

	

	
	
To	solve	this	equation,	we	would	need	to	terminate	the	hierarchy	and	develop	an	
approximation	for	

 
FWxx

	in	terms	of	the	quantities	in	the	previous	balance	equations.	

	
We	would	also	need	to	develop	an	expression	for	the	relaxation	time,	

 
τWxx

.	
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Exam	3	Solutions:	ECE	656	Fall	2017	
	
4)	 This	problem	concerns	the	ballistic	Schottky	barrier	diode	shown	in	the	figure	

below.		Note	that	it	is	forward	biased.		Assume	that	the	semiconductor	is	silicon	with	
an	effective	density	of	states	of	  NC = 3.23×1019 cm-3 	and	that	the	temperature	is	300	
K.		The	quantity,	 Fn ,	is	the	electron	quasi-Fermi	level	(elecrochemical	potential)	in	
the	semiconductor	and	 EFM 	is	the	Fermi	level	in	the	metal.	Not	shown	on	the	left	is	
an	ideal	contact	in	equilibrium.	

	
Answer	the	following	questions.	Numerical	answers	are	required.	

	

	
4a)	 At	the	metal-semiconductor	junction,	what	is	the	density	of	ballistic	electrons	in	the	

semiconductor	with	positive	velocities,	  
n+ x = 0−( )?	

	
Solution:	
	
In	a	bulk,	diffusive	semiconductor,		
	

 n = NCe Fn−EC( ) kBT 		
At	  x = 0− 	only	the	positive	velocity	states	are	filled	by	the	contact	at	the	left.		Half	of	the	
states	have	positive	velocities,	so	
	

  
n+ x = 0−( ) = NC

2
e Fn−EC( ) kBT = 3.23×1019

2
e−0.1/0.026 = 3.45×1017 cm-3 	

	

  
n+ x = 0−( ) = 3.45×1017 cm-3 	

The	non-degenerate	assumption	we	are	making	is	clearly	OK.	
Exam	3	Solutions:	ECE	656	Fall	2017	



ECE-656	 	 Fall	2017	10	

	
4b)	 At	the	metal-semiconductor	junction,	what	is	the	density	of	ballistic	electrons	in	the	

semiconductor	with	negative	velocities,	  
n− x = 0−( ) 	?	

	
Solution:	
	
In	a	bulk,	diffusive	semiconductor,		
	

 n = NCe Fn−EC( ) kBT 		
	

At	  x = 0− 	only	the	negative	velocity	states	are	filled	by	the	contact	at	the	right.		Half	of	the	
states	have	negative	velocities,	so	
	

  
n− x = 0−( ) = NC

2
e EFM −EC( ) kBT = 3.23×1019

2
e−0.2/0.026 = 7.37 ×1015 cm-3 	

	

  
n− x = 0−( ) = 7.37 ×1015 cm-3 	

	
The	non-degenerate	assumption	we	are	making	is	clearly	OK.	

	
4c)	 What	is	the	current	density	in	Amperes	per	cm2?		You	will	need	an	effective	mass	for	

this	question;	you	may	assume	a	simple	parabolic	band	with	an	effective	mass	of	

  m
* = mC

* = 0.26m0 .		
	
Solution:	
	

  
Jn = qυT n+ 0−( )− n− 0−( )⎡

⎣
⎤
⎦ 		

	
From	the	formula	sheet:	

  
υx

+ =υT = 2kBT π m* ηF << 0( ) 	
	

  

υT =
2kBT
π m* =

2 1.38×10−23( )300

3.14 0.26( ) 9.11×10−31( ) = 1.06×105 m/s 	

	

  
Jn = qυT n+ 0−( )− n− 0−( )⎡

⎣
⎤
⎦ = 1.6×1019 1.06×107( ) 3.45×1017 − 7.37 ×1015⎡⎣ ⎤⎦ A/ cm2 	

	

  
Jn = 5.73×105 A/ cm2 	
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ECE-656	Key	Equations	(Weeks	1-15)	
	

Physical	constants:		

  = 1.055 ×10
−34 J-s[ ] 		 m0 = 9.109 ×10

−31 kg[ ] 	
kB = 1.380 ×10

−23 J/K[ ] 	 q = 1.602 ×10−19 C[ ] 	 ε0 = 8.854 ×10
−14 F/cm[ ] 	

--------------------------------------------------------------------------------------------------------------------
Density	of	states	in	k-space:	
1D:	  

Nk =2 × L 2π( ) = L π 	 2D:	  
Nk =2 × A 4π 2( ) = A 2π 2 	 3D:	

  
Nk =2 × Ω 8π 2( ) = Ω 4π 3 	
Density	of	states	in	energy	(parabolic	bands,	per	length,	area,	or	volume):	

   
D1D E( ) = gv

π
2m*

E − ε1( ) 	    
D2D E( ) = gV

m*

π2 	
   
D3D E( ) = gv

m* 2m* E − EC( )
π 23 	

--------------------------------------------------------------------------------------------------------------------	
Fermi	function	and	Fermi-Dirac	Integrals	/	Bose-Einstein	function	

  
f0 E( ) = 1

1+ e E−EF( ) kBT 		
   
N0 =

1
e!ω0 kBT −1

	

   
F j ηF( ) = 1

Γ( j +1)
η jdη

1+ eη−ηF
0

∞

∫ 	    
F j ηF( )→ eηF ηF << 0 	

   

dF j

dηF

=F j−1 	

  
Γ(n) = n −1( )! 	(n	an	integer)		  Γ(1 / 2) = π 	 	 	   Γ( p +1) = pΓ( p) 	
--------------------------------------------------------------------------------------------------------------------	
Scattering:	

   
S !p, ′!p( ) = 2π

"
H !′p , !p

2
δ ′E − E − ΔE( ) 	

   �
H ′p , p =

1
Ω

e− i ′p �r 

−∞

+∞

∫ US (r )ei p�r dr 	

   

1
τ p( ) == S p, ′p( )

′p ,↑
∑ 	 	

   

1
τ m
p( ) = S p, ′p( )Δpz

pz0′p ,↑
∑ 	 	

   

1
τ E
p( ) = S p, ′p( )ΔE

E0′p ,↑
∑ 	

ADP:	 Kq

2
= q2DA

2 	 ODP:	 Kq

2
= D0

2 	 PZ:	 Kq

2
= eePZ κ Sε0( )2 	POP:	 Kβ

2
= ρe2ω 0

2

q2κ 0ε0
κ 0

κ∞

−1
⎛
⎝⎜

⎞
⎠⎟
	

   
S !p, ′!p( ) = π

Ωρ ω
Kq

2
Nω + 1

2
∓

1
2

⎛
⎝⎜

⎞
⎠⎟
δ ′!p − !p ∓ #!q( )δ ′E − E ∓ #ω( ) 	

   
δ ′!p − !p ∓ #!q( )δ ′E − E ∓ #ωβ( )→ 1

#υq
δ ±cosθ + #q

2 p
∓
ω q

υq
⎛

⎝
⎜

⎞

⎠
⎟ 	

   

1
τ
= 1
τ abs

+ 1
τ ems

= 2π


DA
2kBT
cl

⎛

⎝⎜
⎞

⎠⎟
D3D E( )

2
	(ADP)	

  
LD =

κ Sε0kBT
q2n0

	

   

1
τ
= 1
τ m

= 2π

DO

2

2ρω0

⎛

⎝⎜
⎞

⎠⎟
N0 +

1
2


1
2

⎛
⎝⎜

⎞
⎠⎟

D3D E ± ω0( )
2

	
   
N0 =

1
eωo kB T −1

		(ODP)	
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Boltzmann	Transport	Equation:	

  

∂ f
∂t

+
!
υ i∇r f +

!
Fe i∇ p f = df

dt coll

	    
!
Fe = −q

!
E − q

!
υ ×
!
B 	

 

df
dt coll

= −
f − fS( )
τ m

= −δ f
τ m

	(RTA)	

With	a	small	B-field,	the	resulting	2D	current	equation	is	
    
!
Jn =σ S

!
E -σ SµH

!
E ×

!
B( ) 	

	   ω cτ m <<1( ) 	

 µH = µnrH 	   
rH ≡ τ m

2 τ m

2
	  

• ≡ •( )E E 	

	
	
Isothermal	Near-Equilibrium	Transport:		Summary	of	Landauer	Approach	
	

   
I = 2q

h
T E( )∫ M E( ) f1 − f2( )dE à	small	bias,	isothermal: f1 E( )− f2 E( ) = − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟ qV( ) 	

Linear	response	(also	called	low	bias,	near-equilibrium):	

   
I = GV G = 2q2

h
T E( )∫ M E( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE 	
   
G = 2q2

h
T E( ) M E( ) 	

	
   

T E( ) ≡
T E( )∫ M E( ) −∂ f0 ∂E( )dE

M E( ) −∂ f0 ∂E( )dE∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	  

M E( ) = M E( ) −∂ f0 ∂E( )dE∫ 	

  
Rball =

1
M EF( )

h
2q2 =

12.8kΩ
M

	
Modes	/	channels	(general):	

M E( ) ≡ h
4

υx
+ E( ) D1D E( ) 	 	 	 υx

+ E( ) =υ E( ) 	

M E( ) =WM 2D ≡W h
4

υx
+ E( ) D2D E( ) 	 υx

+ E( ) = 2
π
υ E( ) 	

M E( ) = AM 3D ≡ A h
4

υx
+ E( ) D3D E( ) 	 υx

+ E( ) = 1
2
υ E( ) 	

	
Modes	(Parabolic	bands):		

   
E k( ) = EC + !2k 2 2m*( ) 	 	 Modes	(graphene):	

  M E( ) = M1D E( ) = gv 	

   
M E( ) =W M2D E( ) = gvW

2m* E − EC( )
π!

	 	 	    M (E) =W 2 E π!υF 	

   
M E( ) = A M3D E( ) = gv A m*

2π!2 E − EC( )
	

	

Transmission:		
 
T E( ) = λ E( )

λ E( ) + L 	
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Mean-free-path	for	backscattering:	

1D:  λ E( ) = 2υ E( )τ m E( ) 	 2D:  λ E( ) = π
2
υ E( )τ m E( ) 	 3D: λ E( ) = 4

3
υ E( )τ m E( ) 	

	
Diffusion	coefficient:		  

Dn = υx
+ λ 2 	   Dn =υT λ0 2 	 	   

Dn E( ) = υx
+ E( ) λ E( ) 2 	

	
Uni-directional	thermal	velocity:	 	

  
υx

+ =υT = 2kBT π m* ηF << 0( ) 	
	
	
Thermoelectric	transport:	
	
Coupled	current	equations	(diffusive):			  Jx =σE x −σ S dT dx 	    Jx

Q = Tσ SE x −κ 0 dT dx 	

Coupled	current	equations	(inverted):	
  
E x = ρJx + S

dTL

dx
	 	

 
Jx

Q = π Jx −κ e

dT
dx

	

Transport	coefficients:	

  
σ = ′σ E( )∫ dE =

2q2

h
M λ

	
  
′σ E( ) = 2q2

h
λ E( ) M E( )

A
−
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟
	  

M = M E( ) −
∂f0

∂E
⎛

⎝⎜
⎞

⎠⎟∫ dE
	

 
S = −

kB

q
E − EF

kBT
⎛

⎝⎜
⎞

⎠⎟
′σ E( )∫ dE ′σ E( )∫ dE = −

kB

q
⎛

⎝⎜
⎞

⎠⎟
E − EF

kBT
=

kB

−q
⎛

⎝⎜
⎞

⎠⎟
EC − EF( )

kBT
+

Δn

kBT

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ 	
 π = TLS 	(Kelvin	Relation)	

  

κ 0 = T
kB

q
⎛

⎝⎜
⎞

⎠⎟

2
E − EF

kBT
⎛

⎝⎜
⎞

⎠⎟

2

′σ E( )∫ dE =κ 0 = σT
kB

q
⎛

⎝⎜
⎞

⎠⎟

2
E − EF

kBT
⎛

⎝⎜
⎞

⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ave   κ e =κ 0 − πSσ 	

  

κ e

σ
=

kB

q
⎛
⎝⎜

⎞
⎠⎟

2
E − EF

kBT
⎛

⎝⎜
⎞

⎠⎟

2

−
E − EF

kBT
⎛

⎝⎜
⎞

⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
T = LT 		 (Weidemann-Franz	“Law”	)		

  
2

kB

q
⎛
⎝⎜

⎞
⎠⎟

2

< L < π 2

3
kB

q
⎛
⎝⎜

⎞
⎠⎟

2

	(parabolic	bands	with	energy-independent	scattering)	

	

Thermoelectric	material	Figure	of	Merit:	
  
zT =

S 2σT
κ

	

	

Lattice	thermal	conductivity:		
   
κ L =

π 2kB
2TL

3h
λ ph !ω( )M ph !ω( )

A
Wph !ω( )d !ω( )∫ 	

	
General	balance	equation	
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∂nφ
∂t

= −∇ •
!
Fφ +Gφ − Rφ 	

	
Prescription:	

	

   
nφ (!r ,t) = 1

Ω
φ( !p) f !r , !p,t( )

!p
∑ 		

   

!
Fφ ≡

1
Ω

φ !p( ) !υ f !r , !p,t( )
!p
∑ 	

	

    
Gφ = −q

!
E i

1
Ω

!
∇ pφ f

!p
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	 	

  
Rφ ≡

nφ − nφ
0

τφ

	

	
Current	equation:	
	

   
Jnx = nqµnE x + 2µn

d nuxx( )
dx

	 	
  
u = 1

2
m*υd

2 + 3
2

kBTe 	

	
	

   
υSAT ≈

!ω0

m* 	

	
	
	
	


