Interesting Question

Mark Lundstrom

Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA

PN Junction in equilibrium

Consider 1 specific energy channel

On the n-side

On the p-side

$$I_{x2}^{-} = \frac{D(x_2, E_1)dE}{2} f_o(E_1) v^1(x_2, E_1)$$

$$I_{x2}^{-} = \frac{D(x_2, E_1)dE}{2} f_o(E_1) \frac{v(x_2, E_1)}{2}$$

$$I_{x2}^- \propto \sqrt{E_1 - E_{CP}} f_o \left(E_1 \right) \sqrt{E_1 - E_{CP}}$$

$$I_{x2}^{-} \propto \left(E_{1} - E_{CP}\right) f_{o}\left(E_{1}\right)$$

Are these two currents equal?

Ratio of currents

$$I_{x1}^{+} \propto \left(E_{1} - E_{CN}\right) f_{o}\left(E_{1}\right)$$

$$I_{x2}^{-} \propto \left(E_{1} - E_{CP}\right) f_{o}\left(E_{1}\right)$$

Why is the current ratio > 1?

$$\frac{I_{x1}^{+}}{I_{x2}^{-}} \propto \frac{\left(E_{1} - E_{CN}\right) f_{o}\left(E_{1}\right)}{\left(E_{1} - E_{CP}\right) f_{o}\left(E_{1}\right)} = \frac{\left(E_{1} - E_{CN}\right)}{\left(E_{1} - E_{CP}\right)}$$

$$\frac{I_{x1}^{+}}{I_{x2}^{-}} \propto \frac{\left(E_{1} - E_{CN}\right)}{\left(E_{1} - E_{CN} - qV_{bi}\right)} > 1$$

How can the current be zero?

Question

But we know that the current in the channel at energy, E1, must be zero.

What is wrong with our argument?

How do we explain current = 0?

