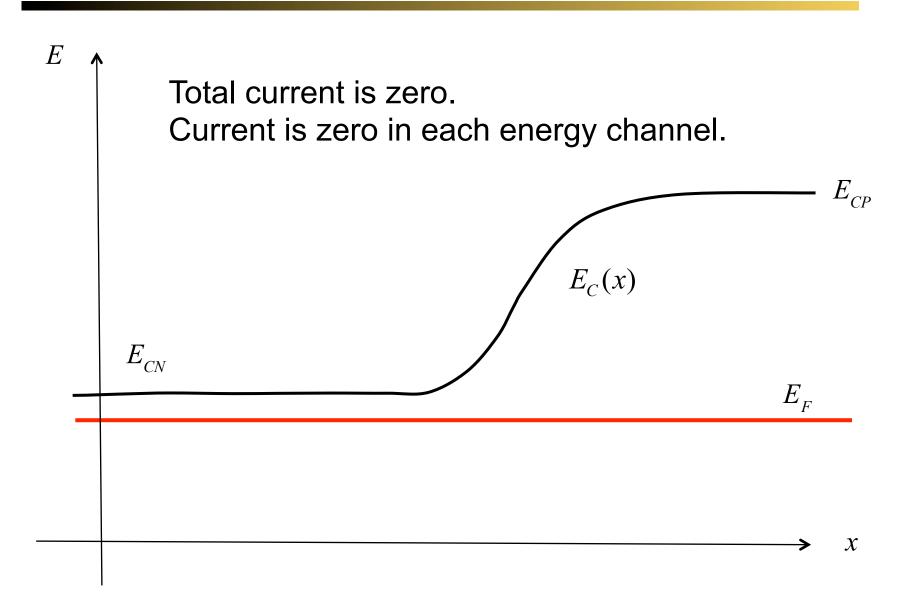
Interesting Question

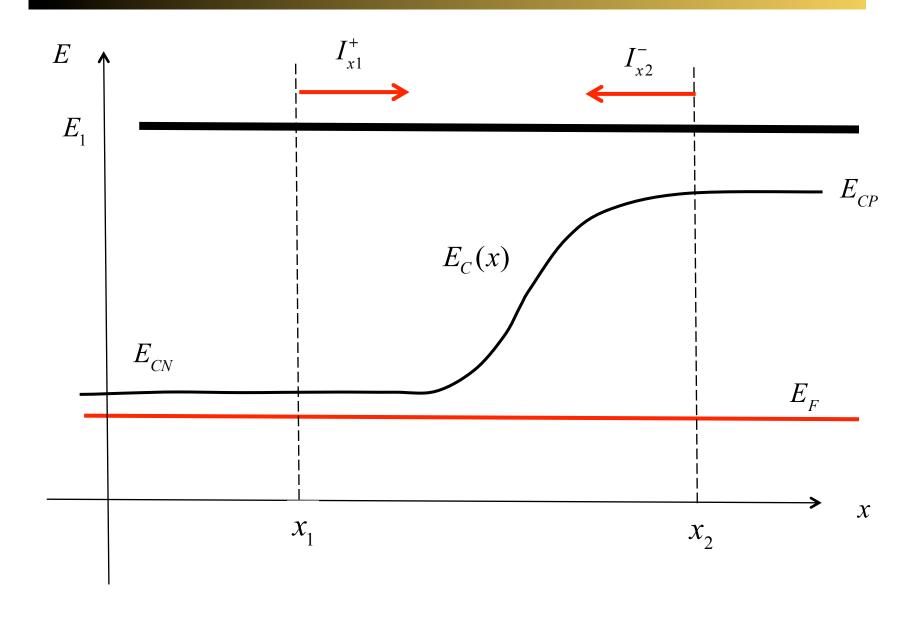
Mark Lundstrom

Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA

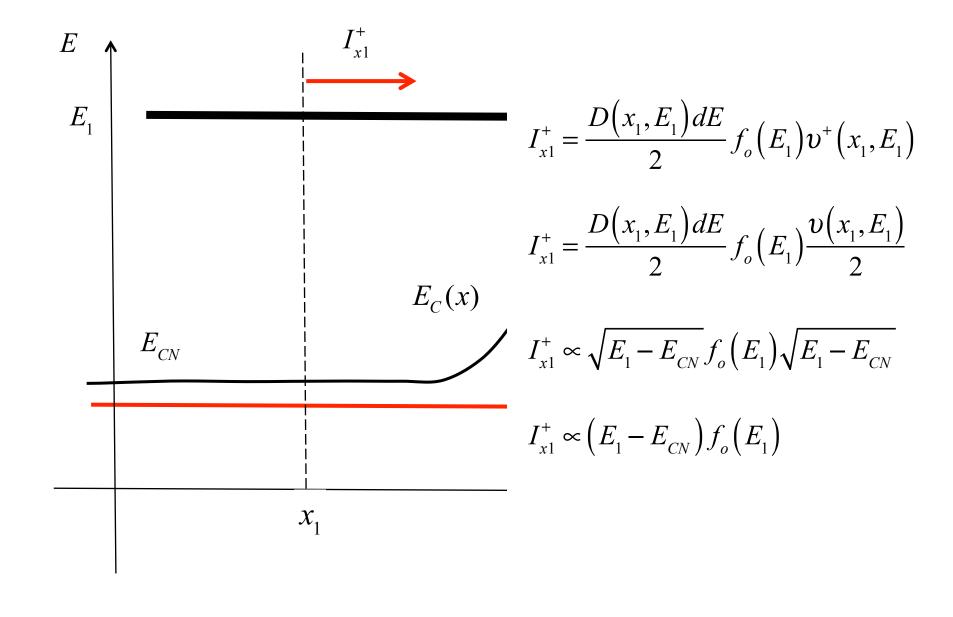
PN Junction in equilibrium



Consider 1 specific energy channel



On the n-side



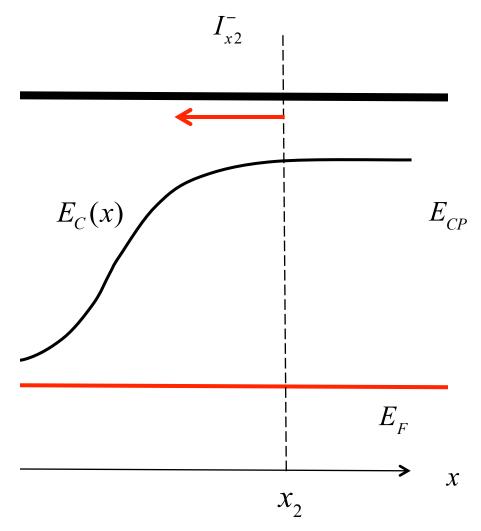
On the p-side

$$I_{x2}^{-} = \frac{D(x_2, E_1)dE}{2} f_o(E_1) v^1(x_2, E_1)$$

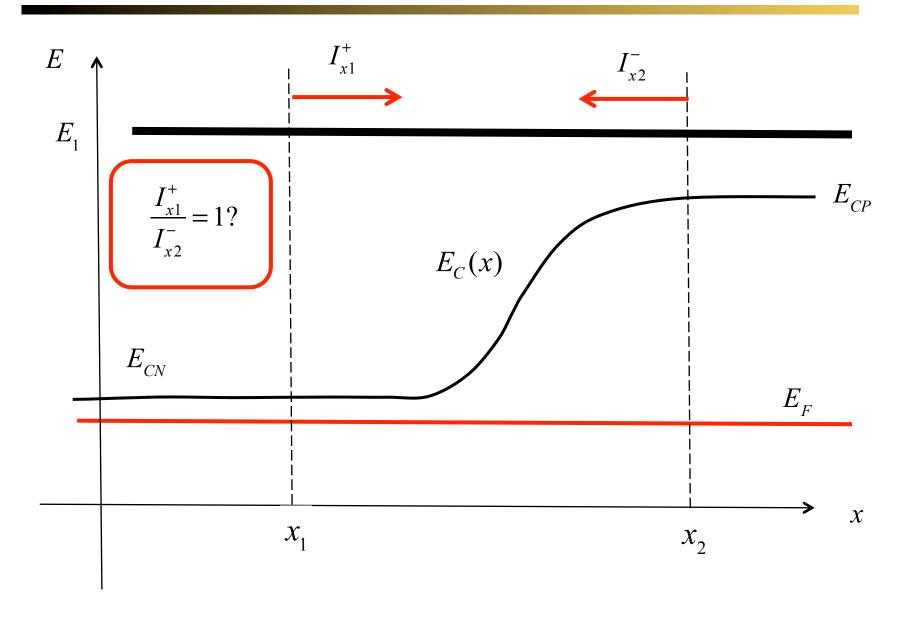
$$I_{x2}^{-} = \frac{D(x_2, E_1)dE}{2} f_o(E_1) \frac{v(x_2, E_1)}{2}$$

$$I_{x2}^- \propto \sqrt{E_1 - E_{CP}} f_o \left(E_1 \right) \sqrt{E_1 - E_{CP}}$$

$$I_{x2}^{-} \propto \left(E_{1} - E_{CP}\right) f_{o}\left(E_{1}\right)$$



Are these two currents equal?



Ratio of currents

$$I_{x1}^{+} \propto \left(E_{1} - E_{CN}\right) f_{o}\left(E_{1}\right)$$

$$I_{x2}^{-} \propto \left(E_{1} - E_{CP}\right) f_{o}\left(E_{1}\right)$$

Why is the current ratio > 1?

$$\frac{I_{x1}^{+}}{I_{x2}^{-}} \propto \frac{\left(E_{1} - E_{CN}\right) f_{o}\left(E_{1}\right)}{\left(E_{1} - E_{CP}\right) f_{o}\left(E_{1}\right)} = \frac{\left(E_{1} - E_{CN}\right)}{\left(E_{1} - E_{CP}\right)}$$

$$\frac{I_{x1}^{+}}{I_{x2}^{-}} \propto \frac{\left(E_{1} - E_{CN}\right)}{\left(E_{1} - E_{CN} - qV_{bi}\right)} > 1$$

How can the current be zero?

Question

But we know that the current in the channel at energy, E1, must be zero.

What is wrong with our argument?

How do we explain current = 0?

Solution

Directed current vs. position

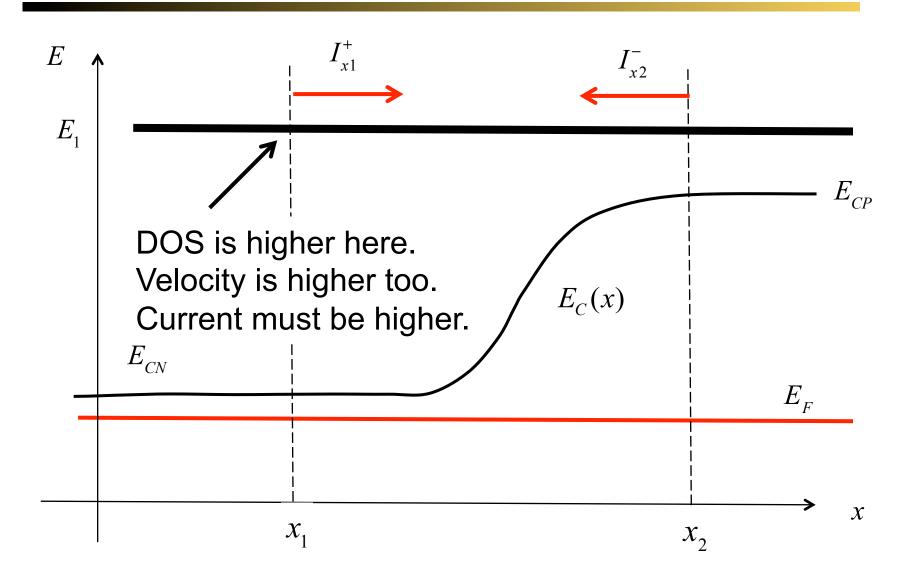
Current is electron density times electron velocity

Electron density:
$$n(E_1)dE = D(E_1)f_o(E_1) \propto \sqrt{E_1 - E_C(x)}$$

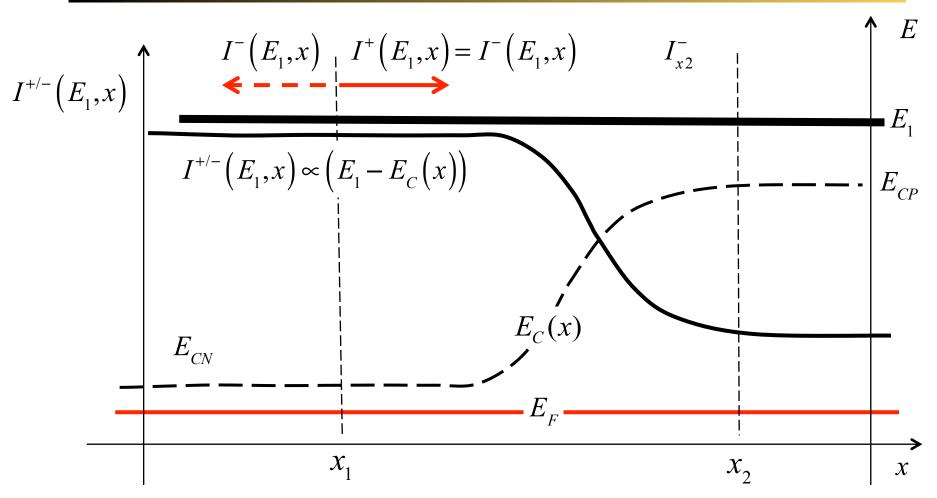
Velocity of electrons:
$$v(E_1) = \sqrt{\frac{2(E_1 - E_C(x))}{m^*}}$$

Current:
$$I^{+/-}(E_1,x) \propto n(E_1,x) dE v(E_1,x) \propto (E_1 - E_C(x))$$

Consider one specific energy channel

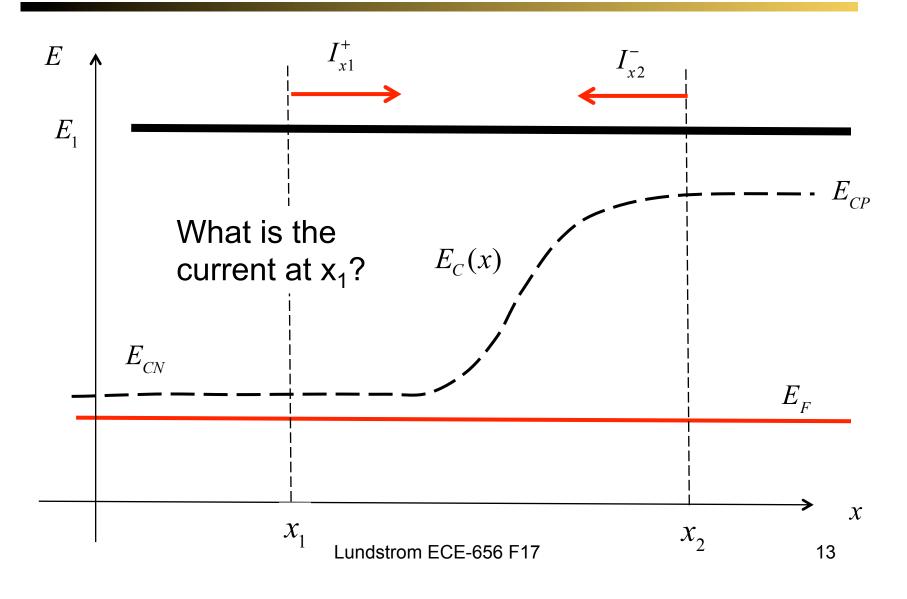


Position-dependent current

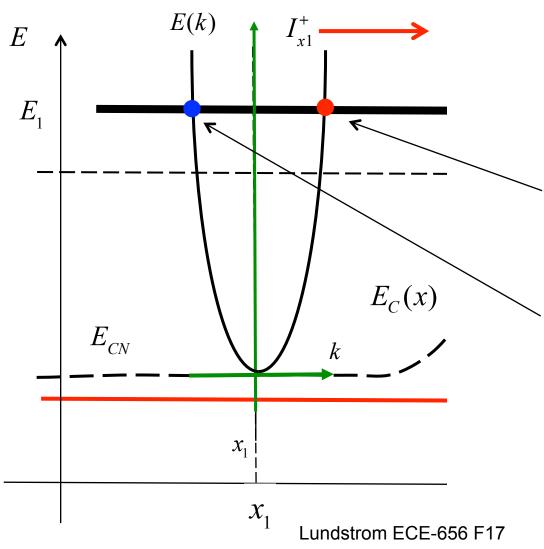


Current is zero at each location, but the magnitude of the forward and reverse currents varies with position.

Another way of looking at this



Current at $x = x_1$



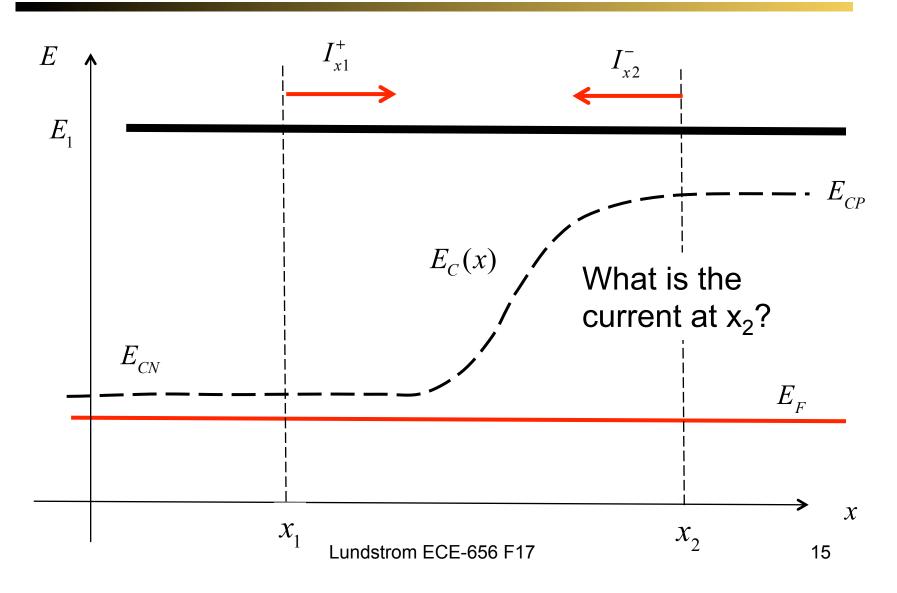
Probability that this state is occupied is $f_0(E_1)$.

Probability that this state is occupied is $f_0(E_1)$.

$$I_{x1}^+ = I_{x1}^-$$

$$I = I_{x1}^+ - I_{x1}^- = 0$$

Current at $x = x_2$



Current at $x = x_2$

Probability that this state is occupied is $f_0(E_1)$.

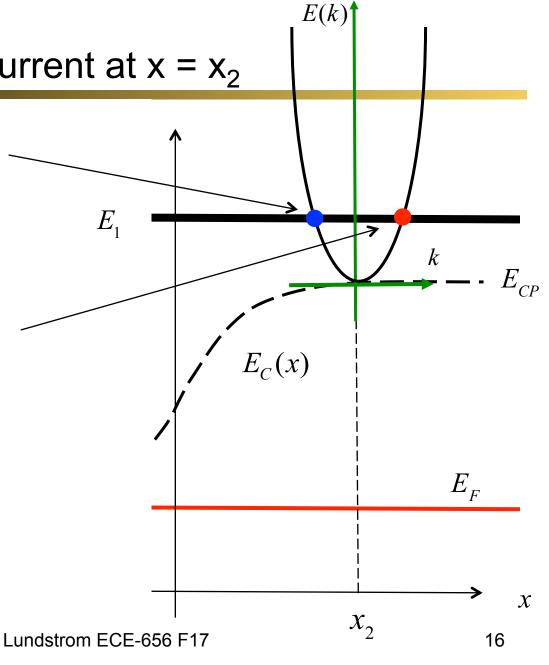
Probability that this state is occupied is $f_0(E_1)$.

$$I_{x2}^{+} = I_{x2}^{-}$$

$$I = I_{x2}^+ - I_{x2}^- = 0$$

But:

$$I_{x2}^+ < I_{x1}^+ = 0$$



Summary

$$I_1^+(x) \propto (E_1 - E_C(x)) f_o(E_1) = I_1^-(x)$$

The forward (and reverse) currents are position-dependent, but the two are equal at any given location, so the current is zero at any given location.

In the first try, we were comparing the forward current at one location with the reverse current at another location.