Density of States

Mark Lundstrom

Electrical and Computer Engineering
Purdue University, West Lafayette, IN USA
Outline

1) Counting states
2) DOS in k-space vs. DOS in E-space
3) Examples
4) Realistic DOS in semiconductors
5) DOS for phonons
Energy levels in Si

Si atom (At. no. 14)

- 1S^2
- 2S^2
- 2P^6
- 3S^2
- 3P^2
- 4S^0

4 valence electrons

8 valence states

“core levels”
States in a Si crystal

- Only the valence states are of interest to us.
- 3s and 3p orbitals hybridize and produce bonding and anti-bonding states.
- The interaction of the electron wavefunctions in the crystal broadens the discrete energy levels of the isolated Si atoms into energy bands.
Energy levels \rightarrow energy bands

Si atom (At. no. 14) Si crystal

$3P^2$ $3S^2$

E_C^{top} E_C^{bot}

E_V^{top} E_V^{bot}

$D_C(E)$ conduction “band”

“forbidden gap”

s-like

p-like

$D_V(E)$ valence “band”

$D(E)$ tells us how the states are distributed with a band.
States in a finite volume of semiconductor

\[
\begin{pmatrix} 0, L_y, -L_z \\ 0, L_y, 0 \end{pmatrix}
\]

Finite volume, \(\Omega \)
(*part of an infinite volume*)

Finite number of states

Periodic boundary conditions:

\[
\psi(0,0,0) = \psi(L_x,0,0)
\]
\[\psi(x) = u_k(x)e^{ik_x x} \]

\[\psi(0) = \psi(L_x) \rightarrow e^{ik_x L_x} = 1 \]

\[k_x L_x = 2\pi j \quad j = 1, 2, 3, \ldots \]

\[k_x = \frac{2\pi}{L_x} j \]

\# of states = \(\frac{dk_x}{(2\pi/L_x)} \times 2 = N_k dk \)

\[N_k = \frac{L_x}{\pi} = \text{density of states in } k\text{-space} \]

\[L_x = Na \quad k_x = \frac{2\pi}{a} j \quad j_{\text{max}} = N \]

"Brillouin zone" \[0 < k < \frac{2\pi}{a} \]

\[k_{\text{max}} = \frac{2\pi}{a} \]
1) Counting states
2) DOS in k-space vs. DOS in E-space
3) Examples
4) Realistic DOS in semiconductors
5) DOS for phonons
Density-of-states in k-space

1D:
\[N_k = 2 \times \left(\frac{L}{2\pi} \right) = \frac{L}{\pi} \quad dk \]

2D:
\[N_k = 2 \times \left(\frac{A}{4\pi^2} \right) = \frac{A}{2\pi^2} \quad dk_x \, dk_y \]

3D:
\[N_k = 2 \times \left(\frac{\Omega}{8\pi^2} \right) = \frac{\Omega}{4\pi^3} \quad dk_x \, dk_y \, dk_z \]
DOS: k-space vs. energy space

States are uniformly distributed in k-space, but non-uniformly distributed in energy space.

Depends on $E(k)$ (e.g. different for parabolic bands and linear bands)

$D(E)dE = N(k)dk$
Effect of E(k) on the DOS

How does non-parabolicity affect DOS(E)?

“Kane bands”

\[
E'(1 + \alpha E') = \frac{\hbar^2 k^2}{2m^*(0)}
\]

\[
E' = E - \varepsilon_1
\]
Effect on DOS

Nonparabolicity increases the DOS (E).
Outline

1) Counting states
2) DOS in k-space vs. DOS in E-space
3) Examples
4) Realistic DOS in semiconductors
5) DOS for phonons
DOS(E) for 1D nanowire

Find DOS(E) per unit energy, per unit length, a **single subband** assuming parabolic energy bands.

\[E = \varepsilon_n + \frac{\hbar^2 k_x^2}{2m^*} \]
Example: 1D (single subband)

\[D_{1D}(E) \, dE = \frac{N_k \, dk}{L} \]

\[D_{1D}(E) \frac{\#}{J-m} \]

\[N_k \, dk = \frac{dk}{(2\pi/L) \times 2} \]

\[N_k \, dk = \frac{L}{\pi} \, dk \]
1D DOS

\[D_{1D}(E) dE = \frac{N_k dk}{L} \]

\[D_{1D}(E) dE = \frac{1}{\pi} dk \]

\[dE = \frac{\hbar^2 k dk}{m^*} \quad dk = \frac{m^* dE}{\hbar^2 k} \]

\[k = \frac{\sqrt{2m^*(E - \varepsilon_n)}}{\hbar} \]

\[D_{1D}(E) dE = \frac{1}{\pi \hbar} \sqrt{\frac{m^*}{2(E - \varepsilon_n)}} dE \]

\[N_k dk = \frac{L}{\pi} dk \]

\[E = \varepsilon_n + \frac{\hbar^2 k^2}{2m^*} \]
Don’t forget to multiply by 2

Multiply by 2 to account for the negative k-states.

\[D_{1D}(E) dE = \frac{2}{\pi \hbar} \sqrt{\frac{m^*}{2(E - \varepsilon_n)}} dE \]

(parabolic energy bands)
Multiple subbands

\[E = \varepsilon_i + \frac{\hbar^2 k^2}{2m_i^*} \]

\[D_{1D}^n (E) = \frac{1}{\pi \hbar} \sqrt{\frac{2m_i^*}{(E - \varepsilon_n)}} \]

Lundstrom ECE-656 F17
In terms of velocity

\[D_{1D}(E) dE = \frac{2}{\pi \hbar} \sqrt{\frac{m^*}{2(E - \varepsilon_n)}} dE \]

\[\nu = \frac{\hbar k}{m^*} = \sqrt{2(E - \varepsilon_n)/m^*} \]

Exercise: Show that the final expression is independent of bandstructure.
Example 2: DOS(E) for 2D electrons

Find DOS(E) per unit energy, per unit area, for a single subband assuming parabolic energy bands.

\[E = \varepsilon_n + \frac{\hbar^2 k_\parallel^2}{2m^*} \]
Example 2: DOS(E) for 2D electrons

\[
D(E)dE = \frac{N(k)}{A} dk^2
\]

\[
N_k = 2 \times \left(\frac{A}{4\pi^2} \right) = \frac{A}{2\pi^2}
\]

\[
D(E)dE = \frac{1}{2\pi^2} 2\pi k dk
\]

Exercise: Show that:

\[
D_{2D}(E) = \frac{m^*}{\pi \hbar^2}
\]

Area of each state in k-space:

\[
\frac{4\pi^2}{A}
\]
Valley degeneracy

Conduction band of Si:
6 equivalent valleys: \(g_V = 6 \) (bulk)

\[
D_{3D}(E) = \frac{m^* \sqrt{2m^*(E-E_C)}}{\pi^2\hbar^3} \Theta(E-E_C)
\]

\[
\Rightarrow g_v m^*_D \sqrt{2m^*_D (E-E_C)} \Theta(E-E_C)
\]

\[
m^*_D \equiv \left(m_\ell m_t \right)^{1/3}
\]
Parabolic bands: 1D, 2D, and 3D

\[D_{1D}(E) = g_V \frac{1}{\pi \hbar} \sqrt{\frac{2m^*}{E - \epsilon_1}} \Theta(E - \epsilon_1) \]

\[D_{2D}(E) = g_V \frac{m^*}{\pi \hbar^2} \Theta(E - \epsilon_1) \]

\[D_{3D}(E) = g_V \frac{m^* \sqrt{2m^*(E - E_C)}}{\pi^2 \hbar^3} \Theta(E - E_C) \]

\[(E(k) = E_C + \hbar^2 k^2 / 2m^*) \]
Graphene (2D)

Exercise: Show that for graphene, the 2D DOS is:

\[D_{2D}(E) = g_V \frac{|E|}{\pi \hbar^2 v_F^2} = \frac{2|E|}{\pi \hbar^2 v_F^2} \]

\[E(k) = \pm \hbar v_F k = \pm \hbar v_F \sqrt{k_x^2 + k_y^2} \]
Outline

1) Counting states
2) DOS in k-space vs. DOS in E-space
3) Examples
4) **Realistic DOS in semiconductors**
5) DOS for phonons
DOS for bulk Si

The DOS is calculated with nonlocal empirical pseudopotentials including the spin-orbit interaction. (Courtesy Massimo Fischetti, August, 2011.)
DOS for a Si quantum well

\[E = \varepsilon_j + \frac{\hbar^2 k_{\parallel}^2}{2m_n^*} \]

\[D_{2D}^j(E) = g_{Vj} \frac{m_n^*}{\pi\hbar^2} \]

\[E(k_{\parallel}) \]

\[\varepsilon_1 \]

\[\varepsilon_2 \]

\[\frac{\hbar^2 k_{\parallel}^2}{2m_i^*} \]

unprimed

primed

\[D_{2D}(E) \]

\[g_V = 4 \]

\[g_V = 2 \]

Lundstrom ECE-656 F17
DOS for a Si quantum well

\[D_{2D}^j (E) = g v_j \frac{m_j^*}{\pi \hbar^2} \]

\[E \]

\[\varepsilon_1 \quad \varepsilon_2 \]

sp3s*d5 TB calculation by Yang Liu, Purdue University, 2007
DOS for a Si quantum well

$sp^3s^*d^5$ TB calculation by Yang Liu, Purdue University, 2007
Outline

1) Counting states
2) DOS in k-space vs. DOS in E-space
3) Examples
4) Realistic DOS in semiconductors
5) DOS for phonons
Debye model

Exercise: Show that the DOS for 3D phonons assuming a linear dispersion is

\[
D_{ph}(\hbar\omega) = \frac{3(\hbar\omega)^2}{2\pi^2(\hbar\nu_s)^3} \left(J\cdot m^3 \right)^{-1}
\]
Realistic phonon DOS (Si)

\[D_{ph}(\hbar \omega) \propto E^2 \]

Near room temperature and above, all states are occupied.

(Figure provided by J. Maassen, Dalhousie Univ., CA, 2017)
Summary

1) DOS in energy depends on dimension \textbf{and} on the dispersion.

2) The DOS becomes complicated at high energies.

3) The phonon DOS is generally complicated over the relevant energy range.