ECE 656: Electronic Transport in Semiconductors

Characteristic Times

for Scattering

Mark Lundstrom

Electrical and Computer Engineering Purdue University West Lafayette, IN USA

Mobility

what scattering time?

Transition rate

scattering potential

Probability per sec that an electron is scattered from a initial state to **one specific** final state.

Computed by "Fermi's Golden Rule"

Elastic vs. inelastic scattering

 $E(\vec{p'}) = E(\vec{p})$ elastic scatteringisotropic vs.
anisotropic $E(\vec{p'}) = E(\vec{p}) + \Delta E$ inelastic scatteringscattering

Characteristic times

$$\frac{1}{\tau(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}')$$

(τ , single particle lifetime)

$$\frac{1}{\tau_m(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}') \frac{\Delta p_z}{p_z}$$

$$\frac{1}{\tau_{E}(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}') \frac{\Delta E}{E}$$

Scattering rate

$$\frac{1}{\tau(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}')$$

(*τ*, single particle lifetime)

$$\vec{p}(t=0)$$

$$t=0$$

$$t \approx \tau$$

$$\frac{1}{\tau(E)} \propto D_f \left(E + \Delta E \right)$$

Scattering rate is often proportional to the density of final states.

Phonon scattering in Si

[2] Figures provided by Massimo V. Fischetti, October, 2009.

Lundstrom ECE-656 F17

Phonon scattering in GaAs

DOS: [1] M. V. Fischetti," *IEEE Trans. Electron Dev.*, **38**, pp. 634-649, 1991 Scattering rate: [2] Provided by M. V. Fischetti, October, 2009.

Lundstrom ECE-656 F17

Scattering rate and momentum relaxation rate

$$\frac{1}{\tau_m(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}') \frac{\Delta p_z}{p_z}$$

$$\vec{p' \theta} \xrightarrow{\vec{p}'} T$$

$$\vec{p}' \vec{p} \xrightarrow{\vec{p}'} T$$

$$\vec{p} = p\hat{z}$$

$$\frac{\Delta p_z}{p_z} = \frac{p - p'\cos\theta}{p} = \left(1 - \frac{p'}{p}\cos\theta\right)$$

$$\frac{1}{\tau_m(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}') - \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}') \frac{p'}{p}\cos\theta$$

$$\frac{1}{\tau_m(\vec{p})} = \frac{1}{\tau(\vec{p})} - A$$

Mobility

Momentum relaxation time

Isotropic scattering

$$\frac{1}{\tau_m(\vec{p})} = \frac{1}{\tau(\vec{p})} - A$$

$$A = \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}') \frac{p'}{p} \cos\theta$$

$$A = \frac{\Omega}{8\pi^3} \int_0^\infty S(\vec{p},\vec{p}') \frac{p'}{p} p^2 dp \int_0^\pi \cos\theta \sin\theta \, d\theta \int_0^{2\pi} d\phi$$

$$\vec{p}' = p\hat{z} \xrightarrow{Z} Z$$

$$\frac{1}{\tau_m(\vec{p})} = \frac{1}{\tau(\vec{p})}$$

For isotropic scattering

0

11

Scattering rate and energy relaxation rate

$$\frac{1}{\tau_{E}(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}') \frac{\Delta E}{E}$$

i) Elastic scattering:

$$\Delta E = 0$$

$$\frac{1}{\tau_{E}(\vec{p})} = 0$$

$$\tau_{E}(\vec{p}) = \infty$$

$$\vec{p}(t=0)$$

$$t = 0$$

$$t = 0$$

$$t = 0$$

$$t \approx \tau$$

$$t \approx \tau_{E} > \tau_{E} \ge \tau$$

Energy relaxation by phonon emission

$$\frac{1}{\tau_{_E}(\vec{p})} = \sum_{\vec{p}',\uparrow} S(\vec{p},\vec{p}') \frac{\Delta E}{E}$$

ii) Phonon emission:

 $\Delta E = \hbar \omega$

$$\frac{1}{\tau_E(\vec{p})} = \frac{\hbar\omega}{E} \frac{1}{\tau(\vec{p})}$$

Phonons

Lundstrom ECE-656 F17

Example

$$\frac{1}{\tau_{E}(\vec{p})} = \frac{\hbar\omega_{0}}{E} \frac{1}{\tau(\vec{p})}$$

Silicon:

$$\hbar\omega_0 = 0.060 \,\mathrm{eV}$$

$$\tau_{E}(\vec{p}) \approx \frac{E_{inj}}{\hbar\omega_{0}} \tau(\vec{p}) \approx 4 \tau(\vec{p})$$

$$\vec{p}(t=0)$$

$$=$$

$$t=0$$

$$t=0$$

$$E_{inj} \approx 10k_BT \approx 0.26 \text{ eV}$$

Scattering mechanisms

1) Electron-phonon scattering

2) Electron-ionized impurity scattering

3) plus several more...

Summary

- 1) Characteristic times are derived from the transition rate, S(p,p')
- 2) S(p,p') is obtained from Fermi's Golden Rule
- 3) The scattering rate is often proportional to the final DOS
- 4) Our goal is to understand the general features of scattering in common semiconductors.

