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1.	Electronic	thermal	conductivity	
	
Basic	equations:	
	

 
σ = ′σ E( )dE

−∞

+∞

∫ =σ n +σ p 	 	 	 	 	 	 	 (1a)	

	

  

S = − 1
qT

E − EF( ) ′σ E( )dE
−∞

+∞

∫

′σ E( )dE
−∞

+∞

∫
	 	 	 	 	 	 (1b)	

	

  
ST = − 1

qT
E − EF( ) ′σ E( )dE

−∞

+∞

∫ = STn + STp 	 	 	 	 	 (1c)	

	

  
κ 0 =

1
q2T

E − EF( )2
′σ E( )dE

−∞

+∞

∫ =κ 0n +κ 0 p 	 	 	 	 	 (1d)	

	

  κ e =κ 0 −Tσ S 2 .	 	 	 	 	 	 	 	 (1e)	
	
The	quantities,	σ ,	 ST ,	and κ 0 	add;	if	we	have	two	bands,	we	just	add	the	
contribution	from	each	band.	The	quantities,	 S 	and	 κ e 	do	not	add.	It	is	easy	to	show	
that	
	

 
S =

σ nSn +σ pSp

σ n +σ p

.	 	 	 	 	 	 	 	 (2)	
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From	(1e)	we	find:	
	

  
κ e =κ 0n +κ 0 p −T σ n +σ p( ) σ nSn +σ pSp

σ n +σ p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

.		 	 	 	 (3)	

	
Now	write	this	as	
	

  

κ e = κ 0n −Tσ nSn( ) + κ 0 p −Tσ pSp( )
+ T

σ n +σ p( ) − σ nSn +σ pSp( )
2

+ σ n +σ p( )σ nSn + σ n +σ p( )σ pSp
⎡
⎣⎢

⎤
⎦⎥
.	 (4)	

	
	
The	electronic	thermal	conductivity	for	the	conduction	band	alone	is	
	

  κ e =κ 0n −Tσ nSn ,	 	 	 	 	 	 	 	 (5a)	
	
and	for	the	valence	band	alone,	
	

  
κ p =κ 0 p −Tσ pSp ,	 	 	 	 	 	 	 	 (5b)	

	
Using	(5a)	and	(5b)	in	(4):	
	
	

  

κ e =κ en +κ ep +
T

σ n +σ p( ) ×

− σ nSn +σ pSp( )
2

+ σ n +σ p( )σ nSn
2 + σ n +σ p( )σ pSp

2⎡
⎣⎢

⎤
⎦⎥

	 	 	 (6)	

	
	

  

κ e =κ en +κ ep +
T

σ n +σ p( ) ×
−σ n

2Sn
2 −σ p

2Sp
2 − 2σ nσ pSnSp +σ n

2Sn
2 +σ pσ nSn

2 +σ p
2Sp

2 +σ nσ pSp
2⎡⎣ ⎤⎦

	

	

  
κ e =κ en +κ ep +

T
σ n +σ p( ) × −2σ nσ pSnSp +σ pσ nSn

2 +σ nσ pSp
2⎡⎣ ⎤⎦ 	
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κ e =κ en +κ ep +T

σ nσ p

σ n +σ p( ) × −2SnSp + Sn
2 + Sp

2⎡⎣ ⎤⎦ 	

	

  

κ e =κ en +κ ep +T
σ nσ p

σ n +σ p( ) Sp − Sn( )2
.	 	 	 	 	 (7)	

	
This	is	our	answer.		The	electronic	thermal	conductivity	consists	of	a	contribution	
due	to	the	conduction	band	alone,	another	contribution	due	to	the	valence	band	
alone,	and	a	bipolar	contribution.		It	is	easy	to	see	that	the	bipolar	contribution	is	
important	only	when	 

σ n ≈σ p 	.	
	
2.	Lorenz	Number	
	
The	Lorenz	number	we	get	including	bipolar	conduction	is:	

	

 
L = κ e

σT
	 	 	 	 	 	 	 	 	 (8)	

	

 

L = κ en

σ nT
σ n

σ n +σ p( ) +
κ ep

σ pT
σ p

σ n +σ p( ) +σ nσ p

Sp − Sn
σ n +σ p

⎛

⎝⎜
⎞

⎠⎟

2

	

	
The	first	two	terms	in	(8)	are	easy	to	understand	–	they	represent	the	weighted	
contributions	from	each	of	the	two	bands.		The	third	term	requires	some	discussion.	
	
To	estimate	the	magnitude	of	the	bipolar	contributions,	assume	that	 

σ n ≈σ p ,	then	
	

 
L = κ en

2σ nT
+

κ ep

2σ pT
+
Sp − Sn( )2
4

	

	
We	also	know	that	at	mid-gap:	

	

Sp ≈ −Sn = S ≈
EG

2qT
.	

	
The	normalized	Lorenz	number	is	

	

 
′L = L

kB q( )2
= κ en

2σ nT kB q( )2
+

κ ep

2σ pT kB q( )2
+ EG

2kBT
⎛
⎝⎜

⎞
⎠⎟

2
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So	the	bipolar	contribution	to	the	normalized	Lorenz	number	is	
	

 
′Lbipolar =

EG

2kBT
⎛
⎝⎜

⎞
⎠⎟

2

.	 	 	 	 	 	 	 	 (9)	

	
	
3.	Physical	picture	of	bipolar	thermal	conduction	
	

 
J =σ

dEF

dx
−σ S

dT
dx
		 	 	 	 	 	 	 	 (10)	

  
JQ = Tσ S

dEF

dx
−κ 0

dT
dx
	 	 	 	 	 	 	 (11)	

	
Case	1:		Holes	only.	
Under	open-circuit	conditions:	
	

  
J p =σ p

dEF

dx
−σ pSp

dT
dx

= 0 	 	 	 	 	 	 	 (12)	

	

 

dEF

dx
= Sp

dT
dx
	 	 	 	 	 	 	 	 	 (13)	

	
Insert	(13)	in	(11)	
	

  
JQ = Tσ pSp

2 dT
dx

−κ 0

dT
dx

= Tσ pSp
2 −κ 0

⎡⎣ ⎤⎦
dT
dx 	

	

  
JQ = − κ 0 −Tσ pSp

2⎡⎣ ⎤⎦
dT
dx

= −κ e

dT
dx

.	 	 	 	 	 	 (14)	

	
The	physical	picture	is	shown	in	Fig.	1	below.	The	electrical	current	is	zero,	but	the	
heat	current	is	not	zero.	Hotter	holes	move	to	the	left,	and	cooler	holes	move	to	the	
right.			
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Fig.	1.	 Illustration	of	hole	current	flow	under	electrically	open	circuit	conditions	

with	a	temperature	gradient	applied.		Hole	diffusion	down	the	temperature	
gradient	and	up	the	QFL	gradient	precisely	balance	electrically	but	not	
thermally.	

	
Now	consider	what	happens	when	there	are	both	electrons	and	holes.		From	(10):	

  
J p + Jn = σ p +σ n( ) dEF

dx
− σ pSp +σ nSn( ) dT

dx
= 0 	 	 	 	 (15)	

 

dEF

dx
=

σ pSp +σ nSn

σ p +σ n

⎛

⎝
⎜

⎞

⎠
⎟

dT
dx

	 	 	 	 	 	 	 (16)	

	
This	gradient	of	the	QFL	drives	both	the	hole	and	electron	currents,	and	it	depends	
on	both	the	hole	and	electron	conductivities.	Compare	(16)	to	(13).	Since	 Sn 	is	
negative,	the	numerator	of	(6)	is	reduced,	and	the	denominator	is		
also	larger,	so	the	gradient	of	the	QFL	is	reduced.	Accordingly,	the	first	term	on	the	
RHS	of	(12)	is	reduced,	so	now	  

J p ≠ 0 ;	  
J p < 0. 	There	is	a	net	hole	current	to	the	left.		

What	direction	is	the	electron	current?	
	
For	the	electron	current,	we	begin	with	(10)	for	the	conduction	band:	

 
Jn =σ n

dEF

dx
−σ nSn

dT
dx

	 	 	 	 	 	 	 (17)	

	
Now	use	(16)	in	(17):	

 

Jn =σ n

σ pSp +σ nSn

σ p +σ n

⎛

⎝
⎜

⎞

⎠
⎟

dT
dx

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−σ nSn

dT
dx

	 	 	 	 	 (18)	

The	electron	current	depends	on	the	hole	conductivity	and	hole	Soret	coefficient,	
because	they	determine	the	gradient	of	the	QFL.	From	(18)	
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Jn =

σ nσ pSp

σ p +σ n

⎛

⎝
⎜

⎞

⎠
⎟

dT
dx

+
σ n

2Sn

σ p +σ n

⎛

⎝
⎜

⎞

⎠
⎟

dT
dx

−
σ pσ nSn

σ p +σ n

⎛

⎝
⎜

⎞

⎠
⎟

dT
dx

−
σ n

2Sn

σ p +σ n

⎛

⎝
⎜

⎞

⎠
⎟

dT
dx

	

  
Jn =

σ nσ p

σ p +σ n

Sp − Sn( ) > 0 	 	 	 	 	 	 	 (19)	

	
The	electron	current	is	positive;	electrons	flow	to	the	left.	Now	use	(16)	in	(12)	to	
examine	the	hole	current.	
	

 

J p =σ p

σ pSp +σ nSn

σ p +σ n

⎛

⎝
⎜

⎞

⎠
⎟

dT
dx

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−σ pSp

dT
dx
	

 
J p = −

σ nσ p

σ p +σ n

Sp − Sn( ) dT
dx

= −Jn 	 	 	 	 	 	 (20)	

	
The	hole	current	is	negative;	holes	also	flow	to	the	left.	
	
The	physical	picture	is	shown	below	–	both	electrons	and	holes	flow	to	the	left	and	
recombine	at	the	contact,	but	the	currents	are	in	opposite	directions,	so	they	cancel.	
	

	
	

Fig.	2	 Illustration	of	hole	and	electron	current	flow	under	electrically	open	circuit	
conditions	with	a	temperature	gradient	applied.		Minority	carriers	have	
lowered	the	QFL	gradients	so	that	hole	diffusion	down	the	temperature	
gradient	and	up	the	QFL	gradient	no	longer	precisely	balance	electrically.	
Holes	flow	to	the	left	contact	at	precisely	the	same	rate	at	which	electrons	
flow	to	the	left	contact.		In	the	contact,	electrons	and	holes	recombine,	giving	
up	an	energy	a	little	larger	than	the	band	gap.		This	process	constitutes	the	
bipolar	heat	conduction.	
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Discussion:	
We	are	most	interested	in	extrinsic	samples	doped	to	operate	at	maximum	zT.	
Consider	an	extrinsic,	p-type	sample:		 

σ p >>σ n 	.		Equation	(20)	becomes	

 
J p = −σ n Sp − Sn( ) dT

dx
= −Jn .		 	 	 	 	 (21)	

The	minority	carrier	conductivity	controls	both	currents.	When	  σ n → 0 ,	  
J p → 0 ,	as	

considered	in	Case	1.	
	
The	physics	of	bipolar	heat	conduction	was	illustrated	in	Fig.	2.	How	can	we	
understand	this	better?	Recall	the	electronic	thermal	conductivity	from	(7):	
	

  
κ e =κ en +κ ep +T

σ nσ p

σ n +σ p( ) Sp − Sn( )2
.	 	 	 	 	 (22)	

The	heat	carried	by	the	bipolar	component	is	

  
JQ

bip = −κ bip

dT
dx

= −T
σ nσ p

σ n +σ p( ) Sp − Sn( )2 dT
dx

.	 	 	 	 (23)	

	
How	does	this	relate	to	the	electrical	current?			
	
	From	(20),	we	find	

 
J p = −

σ nσ p

σ p +σ n

Sp − Sn( ) dT
dx

,			 	 	 	 	 	 (24)	

which	can	be	used	in	(13)	to	write	

 

JQ
bip

J p

= T Sp − Sn( ) ,	 	 	 	 	 	 	 	 (25)	

which	has	a	nice	physical	interpretation	as	discussed	below.	
	
Recall	that	the	Seebeck	coefficient	is	related	to	the	average	energy	at	which	current	
flows,	 EJ ,		with	respect	to	the	Fermi	level:	

 
S = −

EJ − EF

qT
	.	 	 	 	 	 	 	 	 (26)	

For	the	conduction	band,	

 
Sn = −

EC + Δn − EF

qT
.	 	 	 	 	 	 	 	 (27a)	

and	for	the	valence	band,	
	

 
Sp = −

EV − Δ p − EF

qT
.	 	 	 	 	 	 	 	 (27b)	
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Here,	 Δn 	is	how	far	above	the	bottom	of	the	conduction	band	current	flows																	
(  Δn = 2kBT for	a	non-degenerate	semiconductor,	and	 

Δ p is	how	far	below	the	top	of	
the	valence	band	current	flows.)		Using	(27a)	and	(27b)	in	(25),	we	find	
	

 

JQ
bip

J p

=
EG + Δn + Δ p( )

q
	 	 	 	 	 	 	 (28)	

	
or	

	

 
JQ

bip = EG + Δn + Δ p( ) J p q( ) 	 	 	 	 	 	 	 (29)	

	
The	physical	interpretation	is	that	the	flux	of	electrons	and	holes	to	the	contact	(

 
Jn q = − J p q )	times	the	energy	given	up	when	they	recombine	(slightly	larger	than	
the	bandgap)	represents	bipolar	heat	flow.	
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