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Effective	masses	are	obtained	from	a	material’s	bandstructure.		The	effective	mass	tensor	is	
a	measure	of	the	curvature	in	different	directions	near	the	bottom	(or	top)	of	a	band.		The	
effective	mass	tensor	is	given	by	
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In	the	simplest	case	of	parabolic	energy	bands	with	spherical	constant	energy	surfaces,	the	
effective	mass	is	a	scalar,	independent	of	energy,	and	for	the	conduction	band,	we	have	
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For	some	semiconductors,	the	bands	are	parabolic,	but	the	constant	energy	surfaces	are	
ellipsoids.		For	example,	in	the	conduction	band	of	Si,	the	constant	energy	surfaces	are	six	
ellipsoids	locates	along	the	 kx ,	 

ky ,	and	 kz 	axes	(see	Fig.	1).	For	silicon,	(2)	becomes	
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For	each	of	the	six	ellipsoids,	two	of	the	masses	are	the	light,	transverse	effective	mass,	  mt
* 		

and	the	mass	along	the	axis	is	the	heavier,	longitudinal	effective	mass,	   m
* .		

	

	
Fig.	1		Constant	energy	surfaces	for	the	silicon	conduction	band.	
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The	density-of-states	is	an	important	quantity	that	can	be	derived	from	the	bandstructure.		
For	a	parabolic	band	described	by	(2),		the	result	in	3D	is	
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π 23 E > EC( ) .	 	 	 	 	 	 (4)	

	
For	ellipsoidal	bands	described	by	(3),	the	result	is	more	complicated,	but	we	can	make	it	
look	simple	by	defining	a	density-of-states	effective	mass	so	that	eqn.	(4)	becomes	
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where	for	ellipsoidal	bands	
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For	the	conduction	band	of	Silicon,	  gV = 6 	,	so	
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For	the	conduction	band	of	Ge,	  gV = 4 ,	so	
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For	other	types	of	parabolic	bandstructures,	appropriate	density-of-states	effective	masses	
could	be	defined	to	make	the	correct	density-of-states	look	as	simple	as	(5).		For	example,	
see	R.F.	Pierret	(Advanced	Semiconductor	Fundamentals,	2nd	Ed.,	2003,	p.	96)	for	the	
valence	band	density-of-state	effective	mass.	
	
One	can	also	define	a	conductivity	effective	mass.		For	a	spherical,	parabolic	energy	band,	
the	conductivity	is	
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qτ 0

m* ,	 	 	 	 	 	 	 	 	 	 (8)	

	
where	 τ 0 	is	the	momentum	relaxation	time	(assumed	to	be	a	constant	for	this	simple	
example).	The	carrier	density	involves	an	integration	of	the	density-of-states,	for	which	we	
use	the	density-of-state	effective	mass,	but	what	should	we	use	for	the	effective	mass	in	the	
denominator	of		(8)?	
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Assume	there	is	an	electric	field	in	the	x-direction;	we	expect	electrons	to	respond	to	the	
electric	field	with	the	effective	mass	in	direction	of	the	electric	field.	Near	equilibrium,	one	
sixth	of	the	electrons	are	in	each	of	the	six	ellipsoids.	For	ellipsoids	one	and	two	in	Fig.	1,	
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while	for	ellipsoids	three	through	six,	
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The	total	conductivity	is	
	
	  σ = 2σ 1 + 4σ 3 		 	 	 	 	 	 	 	 	 (9c)	
or	
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We	can	write	(9d)	in	a	simple	form	like	(8)	by	defining	a	conductivity	effective	mass	
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where	
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Later	on	in	this	course,	we	will	make	use	of	the		distribution	of	channels,	  M3D E( ) ,	which	
for	spherical,	parabolic	bands		is	given	by	
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2π2 E − EC( ) E > EC( ) .	 	 	 	 	 	 (11)	

What	effective	mass	do	we	use	when	the	bands	are	ellipsoidal?		The	answer	is	  mDOM
* ,	the	

distribution-of-modes	effective	mass.	
	
To	compute,	  mDOM

* ,	we	begin	with	the	general	description	of	 M E( ) for	a	general	band:	
	

   
M3D E( ) ≡ h

2L
υx δ E − Ek( )

k
∑ 	.	 	 	 	 	 	 	 (12)	
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(See:		Jeong,	Changwook;	Kim,	Raseong;	Luisier,	Mathieu;	Datta,	Supriyo;	and	Lundstrom,	
Mark	S.,	"On	Landauer	versus	Boltzmann	and	full	band	versus	effective	mass	evaluation	of	
thermoelectric	transport	coefficients,”	J.	Appl.	Phys.,	107,	023707,	2010.)	
	
When	(12)	is	evaluated	for	ellipsoidal	bands,	we	find	for	each	ellipsoid,		
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where	we	have	assumed	transport	in	the	x-direction.		For	Si,	we	add	the	channels	in	each	
ellipsoid	to	find	
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It	is	instructive	to	put	numbers	in.		For	Si,	we	find	
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which	shows	that	the	numerical	value	of	these	different	effective	masses	can	be	quite	
different.	
	
To	summarize,	the	band	curvature	effective	mass	comes	directly	from	the	

  
E
!
k( ) 	according	

to	(1).	It	is	also	convenient	to	introduce	various	defined	effective	masses	to	simplify	
calculations.	These	defined	effective	masses	are	the	density	of	states	effective	mass	(6),	the	
conductivity	effective	mass	(10b),	and	the	distribution	of	modes	effective	mass	(13b).	


