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I. Introduction
We write the mobility as

_a{(z)

- %

and the Hall factor as

)

What are these factors in 1D, 2D, and 3D for parabolic energy bands,
272
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and power law scattering?
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II. Solution of the BTE

Begin with the general BTE:
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and make the Relaxation Time Approximation to the collision integral,
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to write the steady-state, spatially homogeneous BTE as

_E v p=-31), (7)
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Now assume

V,f=V,1 (8)
to find )
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Recognizing that f; is a function of energy, we use the chain rule

V, 5 (E)= (gﬁ))v E= @];) (10)

which can be used to write (9) as
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Equation (11) is the solution to the steady-state, spatially uniform BTE in the Relaxation
Time Approximation. To find the current, we evaluate
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where d = 1, 2, or 3 depending on the dimension.
For the x-directed current:
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For an x-directed electric field
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so we have
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o, :LZqzvf(l_{)rm (—%j : (14)

Equation (14) is valid in 1D, 2D, or 3D for arbitrary bandstructures

If we write
Gn = n’qun ’
then we obtain from (14)
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Now let’s assume parabolic energy bands and write the mobility as in (1)
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from which we obtain
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which is the definition of the average scattering time and is valid for parabolic energy
bands in 1D, 2D, or 3D.
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Case i): 3D with parabolic energy bands

Assuming that v” is equally distributed between the three degrees of freedom,
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So (15) becomes
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and for parabolic energy bands
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so (16) becomes
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Equation (18) is analogous to Eq. (7.76) in Near-Equilibrium Transport (Lundstrom and
Jeong).

If we now assume non-degenerate conditions, then
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and (18) becomes
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)= G g (19

Recognizing that the average thermal energy is

W = %nkBT =n((E-E,)),

we can express (19) as
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where the average of a quantity, X (E ) is over the equilibrium distribution function
3 x(£)(2)
YAlE)

Equation (20) is valid for a 3D semiconductor with parabolic energy bands under non-
degenerate conditions. Itis Eq. (3.62) in Fundamentals of Carrier Transport (Lundstrom).
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Case ii): 2D with parabolic energy bands

Assuming that v” is equally distributed between the three degrees of freedom,
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So (15) becomes



{(z.))= z"“;sz(gé) : (22)

and for parabolic energy bands, we use (17), so (22) becomes
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Equation (23) is Eq. (7.76) in Near-Equilibrium Transport (Lundstrom and Jeong).
If we now assume non-degenerate conditions, then
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and (23) becomes
Z(E - EC )Tm .fO
= (24)
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Recognizing that the average thermal energy in 2D is
W =nk,T =n{(E-E,)),
we can express (24) as
<(E - EC )Tm >
T,))= ", (25)

which is the same as (20).

Equation (25) is valid for a 2D semiconductor with parabolic energy bands under non-
degenerate conditions.

Case iii): 1D with parabolic energy bands

In 1D,
vl=v’
So (15) becomes
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and for parabolic energy bands, we use (17), so (26) becomes
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Equation (27) is analogous to Eq. (7.76) in Near-Equilibrium Transport (Lundstrom and
Jeong).

If we now assume non-degenerate conditions, then
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and (27) becomes
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Recognizing that the average thermal energy in 1D is

Wznkfém«E—Edy

we can express (28) as
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which is the same as (20) and (25).

Equation (29) is valid for a 1D semiconductor with parabolic energy bands under non-
degenerate conditions.

Summary:

The general expression for the average scattering time for a semiconductor with parabolic
energy bands is

S(5-£0)r, (-2 ]
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where d = 1, 2, or 3 depending on the dimension. For a nondegenerate semiconductor we
find (independent of dimension)

((E-E)7,)
<<7m>> = <(E—EC)>

where the average is over the equilibrium distribution as defined in (21).
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III. Exercises: Working out average scattering times

1) For power law scattering in 2D

(s+2)

((z,))= )

where s is the characteristic exponent in the expression

S

t(E-E.)=1[(E-E.)/K,T] ,
and nondegenerate conditions are assumed.

Prove this result.

Solution:
Begin with the definition of average momentum relaxation time:
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Consider the numerator first. In 2D, we have:
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Now work on the denominator:
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Using (viii) and (vii), we find
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Assuming non-degenerate conditions, we find
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2)  Work out the corresponding result in 1D.

Solution:
The solution proceeds much as in problem 1).
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Change variables:

,2m*kBT 3 T ns+1/2 p

R0, 1+

y2m'k,T
mh 5 kT
num:‘ro—vzkaTkBTF(s+3/2)ﬁ_l/2(nF)

num =27

num=7,

num=7,

d
. T(s+3/2)F....(n,)

num = TO

/]
1 175
denom:E;fO:E_{ fdk
1 TooN2m 12
den0m=5;ﬁ—£ﬁ)7(E—Ec) dE
denom = 2h '(][Ol-i-e(EEf)/kBT dE

()



20y 14T

J2m'k,T
#F(l/z)}-—l/z(n”
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For non-degenerate conditions power law scattering, and 1D,
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3) Work out the corresponding result in 3D.

Solution:
The solution proceeds much as in problem 1) and 2).
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For non-degenerate conditions power law scattering, and 3D,
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Summary of non-degenerate results:

For power law scattering, parabolic energy bands, and non-degenerate carrier
statistics. the “transport average” momentum relaxation time in 1D, 2D, and 3D are:

1D: <<Tm>>ﬂo%
e (e )=, r(rs(zi) _ (32)
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Knowing these times, we get the mobility from
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m
The analogous procedure in the Landauer approach is to relate the mobility to the mean-
free-path according to
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To compute <<l>>, we assume power law scattering
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where the characteristic exponent for the mfp is “r” rather than “s”. From the definition of
the average mean-free-path
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assuming parabolic bands and nondegenerate conditions, we could express <<l>> in terms

of Gamma functions.
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IV. Hall Factors

The definition of the Hall factor was given in (2) as

(=)

p,o= L (33)
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We have worked out the denominator in 1D, 2D, and 3D. For the numerator, we can
recognize from (4) that ri is also in power law form. From (4), we write

Tm(E—EC)Z:rg[(E—EC)/kBTTS’ 34)

so we can evaluate <<7: >> by using the results for <<7: >> with s — 25s.
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Hall Factor in 1D: (non-degenerate)
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Hall Factor in 2D: (non-degenerate)
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Hall Factor in 3D: (non-degenerate)
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Summary of Hall factors: (non-degenerate)
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