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I.		Introduction	
	
We	write	the	mobility	as	

  
µ =

q τ m

m* 	 	 	 	 	 	 	 	 	 	 (1)	

and	the	Hall	factor	as	

  

rH =
τ m

2

τ m

2 	 .	 	 	 	 	 	 	 	 	 (2)	

	
What	are	these	factors	in	1D,	2D,	and	3D	for	parabolic	energy	bands,	

   
E = EC + 

2k 2

2m* ,	 	 	 	 	 	 	 	 	 (3)	

and	power	law	scattering?	
	

  
τ E − EC( ) = τ 0 E − EC( ) kBT⎡⎣ ⎤⎦

s
.		 	 	 	 	 	 	 (4)	

	
	
II.			Solution	of	the	BTE	
	
Begin	with	the	general	BTE:	
	

 

∂ f
∂t

+

υ i∇r f +


Fe i∇ p f = Ĉf ,	 	 	 	 	 	 	 	 (5)	

and	make	the	Relaxation	Time	Approximation	to	the	collision	integral,	
	

 
Ĉf = −

f p( )− f0
p( )

τ m

⎛
⎝⎜

⎞
⎠⎟
= −

δ f p( )
τ m

,	 	 	 	 	 	 	 (6)	
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to	write	the	steady-state,	spatially	homogeneous	BTE	as	

  
−q


E i∇ p f = −
δ f p( )
τ m

.	 	 	 	 	 	 	 	 (7)	

	
Now	assume	 	

∇ p f ≈ ∇ p f0 	 	 	 	 	 	 	 	 	 	 (8)	
	
to	find	

  δ f
p( ) = +qτ m


E i∇ p f0 .	 	 	 	 	 	 	 	 (9)	

	
Recognizing	that	 f0 	is	a	function	of	energy,	we	use	the	chain	rule	

 
∇ p f0 E( ) = ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟ ∇ pE = ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

υ ,	 	 	 	 	 	 	 (10)	

	
which	can	be	used	to	write	(9)	as	
	

  
δ f p( ) = τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

υ i −q


E( ) .	 	 	 	 	 	 	 	 (11)	

	
Equation	(11)	is	the	solution	to	the	steady-state,	spatially	uniform	BTE	in	the	Relaxation	
Time	Approximation.		To	find	the	current,	we	evaluate	

 


Jn
r( ) = 1

Ld
−q( ) υ


k( )δ f r , k( )

k
∑ ,	 	 	 	 	 	 	 (12)	

where	d	=	1,	2,	or	3	depending	on	the	dimension.	
	
For	the	x-directed	current:	

 
Jnx
r( ) = 1

Ld
−q( )υx


k( )δ f r , k( )

k
∑ 	

  
Jnx
r( ) = 1

Ld
−q( )υx


k( ) τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

υ i −q


E( )⎧

⎨
⎩

⎫
⎬
⎭

k
∑ .	 	 	 	 	 (13)	

	
For	an	x-directed	electric	field	

  
Jnx
r( ) = 1

Ld
q2υx


k( ) τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟υxE x

⎧
⎨
⎩

⎫
⎬
⎭

k
∑ 	

  
Jnx
r( ) = 1

Ld
q2υx

2

k( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑⎧

⎨
⎩

⎫
⎬
⎭
E x =σ nE x ,	

	
so	we	have	

 Jnx =σ xxE x 	
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σ xx =

1
Ld

q2υx
2

k( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑ .	 	 	 	 	 	 	 (14)	

	
Equation	(14)	is	valid	in	1D,	2D,	or	3D	for	arbitrary	bandstructures	

	
If	we	write	

σ n ≡ nqµn ,	
then	we	obtain	from	(14)	
	

 

µn =

1
Ld

q2υx
2

k( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

nq
=

qυx
2

k( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

f0
k
∑ .	

Now	let’s	assume	parabolic	energy	bands	and	write	the	mobility	as	in	(1)	

 

µn =
q τ m
m* =

qυx
2 τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

f0
k
∑ 	

from	which	we	obtain	

 

τ m =
m*υx

2 τ m − ∂ f0
∂E

⎛
⎝⎜

⎞
⎠⎟

k
∑

f0
k
∑ ,	 	 	 	 	 	 	 	 (15)	

which	is	the	definition	of	the	average	scattering	time	and	is	valid	for	parabolic	energy	
bands	in	1D,	2D,	or	3D.	
	
	
Case	i):		3D	with	parabolic	energy	bands	
	
Assuming	that	υ 2 is	equally	distributed	between	the	three	degrees	of	freedom,	

υx
2 =υy

2 =υz
2 = υ 2

3
.	

So	(15)	becomes	

 

τ m =

m*υ 2τ m
3

− ∂ f0
∂E

⎛
⎝⎜

⎞
⎠⎟

k
∑

f0
k
∑ ,		 	 	 	 	 	 	 (16)	

and	for	parabolic	energy	bands	
1
2
m*υ 2 = E − EC( ) 	 	 	 	 	 	 	 	 	 (17)	

so	(16)	becomes	
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τ m =
E − EC( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

3 2( ) f0
k
∑ .	 	 	 	 	 	 	 (18)	

	
Equation	(18)	is	analogous	to	Eq.	(7.76)	in	Near-Equilibrium	Transport	(Lundstrom	and	
Jeong).	
	
If	we	now	assume	non-degenerate	conditions,	then		
	

− ∂ f0
∂E

⎛
⎝⎜

⎞
⎠⎟ =

1
kBT

f0 ,	

and	(18)	becomes	
	

 

τ m =
E − EC( )τ m f0

k
∑
3kBT 2( ) f0

k
∑ .	 	 	 	 	 	 	 	 (19)	

Recognizing	that	the	average	thermal	energy	is	

W = 3
2
nkBT = n E − EC( ) ,	

we	can	express	(19)	as	
	

τ m =
E − EC( )τ m
E − EC( ) ,	 	 	 	 	 	 	 	 (20)	

where	the	average	of	a	quantity,	 X E( ) is	over	the	equilibrium	distribution	function	
according	to	

  

X =
X E( ) f0 E( )

k
∑

f0 E( )
k
∑

.	 	 	 	 	 	 	 	 (21)	

Equation	(20)	is	valid	for	a	3D	semiconductor	with	parabolic	energy	bands	under	non-
degenerate	conditions.		It	is	Eq.	(3.62)	in	Fundamentals	of	Carrier	Transport	(Lundstrom).	
	
	
Case	ii):		2D	with	parabolic	energy	bands	
	
Assuming	that	υ 2 is	equally	distributed	between	the	three	degrees	of	freedom,	

υx
2 =υy

2 = υ 2

2
.	

So	(15)	becomes	
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τ m =

m*υ 2τ m
2

− ∂ f0
∂E

⎛
⎝⎜

⎞
⎠⎟

k
∑

f0
k
∑ ,		 	 	 	 	 	 	 (22)	

and	for	parabolic	energy	bands,	we	use	(17),	so	(22)	becomes	

 

τ m =
E − EC( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

f0
k
∑ .	 	 	 	 	 	 	 (23)	

Equation	(23)	is	Eq.	(7.76)	in	Near-Equilibrium	Transport	(Lundstrom	and	Jeong).	
	
If	we	now	assume	non-degenerate	conditions,	then		

− ∂ f0
∂E

⎛
⎝⎜

⎞
⎠⎟ =

1
kBT

f0 ,	

and	(23)	becomes	

 

τ m =
E − EC( )τ m f0

k
∑

kBT( ) f0
k
∑ .	 	 	 	 	 	 	 	 (24)	

Recognizing	that	the	average	thermal	energy	in	2D	is	
W = nkBT = n E − EC( ) ,	

we	can	express	(24)	as		

τ m =
E − EC( )τ m
E − EC( ) ,	 	 	 	 	 	 	 	 (25)	

	
which	is	the	same	as	(20).	
	
Equation	(25)	is	valid	for	a	2D	semiconductor	with	parabolic	energy	bands	under	non-
degenerate	conditions.	
	
	
Case	iii):		1D	with	parabolic	energy	bands	
	
In	1D,	

υx
2 =υ 2 	

So	(15)	becomes	

 

τ m =
m*υ 2τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

f0
k
∑ ,	 	 	 	 	 	 	 	 (26)	

and	for	parabolic	energy	bands,	we	use	(17),	so	(26)	becomes	
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τ m =
E − EC( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

1 2( ) f0
k
∑ .	 	 	 	 	 	 	 (27)	

Equation	(27)	is	analogous	to	Eq.	(7.76)	in	Near-Equilibrium	Transport	(Lundstrom	and	
Jeong).	
	
If	we	now	assume	non-degenerate	conditions,	then		

− ∂ f0
∂E

⎛
⎝⎜

⎞
⎠⎟ =

1
kBT

f0 ,	

and	(27)	becomes	
	

 

τ m =
E − EC( )τ m f0

k
∑
kBT 2( ) f0

k
∑ .	 	 	 	 	 	 	 	 (28)	

Recognizing	that	the	average	thermal	energy	in	1D		is	

W = n kBT
2

= n E − EC( ) ,	
we	can	express	(28)	as		

τ m =
E − EC( )τ m
E − EC( ) ,	 	 	 	 	 	 	 	 (29)	

which	is	the	same	as	(20)	and	(25).	
	
Equation	(29)	is	valid	for	a	1D	semiconductor	with	parabolic	energy	bands	under	non-
degenerate	conditions.	
	
Summary:	
	
The	general	expression	for	the	average	scattering	time	for	a	semiconductor	with	parabolic	
energy	bands	is	
	

 

τ m =
E − EC( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

d 2( ) f0
k
∑ ,	 	 	 	 	 	 	 (30)	

	
where	d	=	1,	2,	or	3	depending	on	the	dimension.		For	a	nondegenerate	semiconductor	we	
find	(independent	of	dimension)	

τ m =
E − EC( )τ m
E − EC( ) ,	 	 	 	 	 	 	 	 (31)	

where	the	average	is	over	the	equilibrium	distribution	as	defined	in	(21).	



	 7	

III.	Exercises:		Working	out	average	scattering	times	
	
1) For	power	law	scattering	in	2D	

  
τm = τ 0

Γ s + 2( )
Γ 2( ) ,		

where	s	is	the	characteristic	exponent	in	the	expression	

  
τ E − EC( ) = τ 0 E − EC( ) kBT⎡⎣ ⎤⎦

s
	,	

and	nondegenerate	conditions	are	assumed.	

Prove	this	result.	
	

Solution:	
Begin	with	the	definition	of	average	momentum	relaxation	time:	

 

τ m =
E − EC( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

d 2( ) f0
k
∑ = τ m =

∂
kBT ∂ηF

E − EC( )τ m f0
k
∑

f0
k
∑ 	

	
  
τ m = num

denom
	 	 	 	 	 	 	 	 (i)	

	
Consider	the	numerator	first.		In	2D,	we	have:	

   
num = 1

kBT
∂

∂ηF

E − EC( )τ m f0
k
∑ = ∂

∂ηF

1
2π 2 τ 0

0

∞

∫
E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s+1

f0 2π kdk 		 (ii)	

Assuming	parabolic	energy	bands:	

   
kdk = gV

m*

2 dE 	 	 	 	 	 	 	 	 (iii)	

so	(ii)	becomes	

   
num = τ 0gV

m*

π2

∂
∂ηF 0

∞

∫
E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s+1

f0dE 	 	 	 	 	 (iv)	

	
Change	variables	to	

 
η =

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟
ηF =

EF − EC

kBT
⎛

⎝⎜
⎞

⎠⎟
	 	 	 	 	 	 (v)	

so	

   
num = τ 0gV

m*kBT
π2

∂
∂ηF 0

∞

∫
η s+1

1+ eη−ηF
dη 	 	 	 	 	 (vi)	
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num = τ 0gV

m*kBT
π2 Γ s+ 2( ) ∂

∂ηF

F s+1 ηF( ) 	 	 	 	 	 (vii)
	

	
Now	work	on	the	denominator:	

   
denom = f0

k
∑ = 1

2π 2
0

∞

∫ f0 2π kdk 	

  
denom = 1

π 0

∞

∫ f0kdk 	

   
denom = gV

m*

π2
0

∞

∫ f0dE 	

   
denom = gV

m*kBT
π2

0

∞

∫
dη

1+ eη−ηF
	

    
denom = gV

m*kBT
π2 Γ 1( )F 0 ηF( ) 	 	 	 	 	 	 (viii)	

	
Using	(viii)	and	(vii),	we	find	

   
τ m = num

denom
=
τ 0 Γ s+ 2( )

Γ 1( )
F s ηF( )
F 0 ηF( ) 	 	 	 	 	 (ix)	

	
Assuming	non-degenerate	conditions,	we	find	
	

  

τ m = τ 0

Γ s+ 2( )
Γ 1( ) = τ 0

Γ s+ 2( )
Γ 2( ) .	

	
	

2)	 Work	out	the	corresponding	result	in	1D.	
	

Solution:	
The	solution	proceeds	much	as	in	problem	1).	
	

 

τ m =
E − EC( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

d 2( ) f0
k
∑ =

1
kBT

∂
∂ηF

E − EC( )τ m f0
k
∑
1 2 f0

k
∑ = num

denom
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num = 1
kBT

∂
∂ηF

E − EC( )τ m f0
k
∑

= 1
kBT

∂
∂ηF

E − EC( )τ 0

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s

f0 dk
−∞

∞

∫

= 2τ 0

∂
∂ηF

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s+1

f0 dk
0

∞

∫ 	

	
Assuming	parabolic	energy	bands:	

   
k =

2m* E − EC( )


	 	
   
dk = 2m*

2
E − EC( )−1/2

dE 	

   
num = 2τ 0

∂
∂ηF

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s+1

f0

2m*

2
E − EC( )−1/2

dE
EC

∞

∫

	

   
num = τ 0

2m* kBT


∂
∂ηF

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s+1/2

f0 dE
EC

∞

∫

	Change	variables:	
	

   
num = τ 0

2m*kBT


∂
∂ηF

η s+1/2

1+ eη−ηF
dη

EC

∞

∫

	

    
num = τ 0

2m*kBT


kBT ∂
∂ηF

Γ s+ 3/ 2( )F s+1/2 ηF( )

	
    
num = τ 0

2m*kBT


kBTΓ s+ 3/ 2( )F s−1/2 ηF( ) 	 	 	 	 (x)	

   
denom = 1

2
f0

k
∑ = 1

2 −∞

∞

∫ f0dk

	

   
denom = 1

2
f0

k
∑ =

0

∞

∫ f0

2m*

2
E − EC( )−1/2

dE 	

   
denom = 2m*

2 0

∞

∫
0

E − EC( )−1/2

1+ e E−EC( ) kBT
dE 	

   
denom =

2m* kBT
2 0

∞

∫
0

E − EC

kBT
⎛
⎝⎜

⎞
⎠⎟

−1/2

1+ e E−EC( ) kBT
dE 	
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denom =

2m*kBT
2 0

∞

∫
η−1/2

1+ eη−ηF
dη 	

    
denom =

2m*kBT
2

Γ 1/ 2( )F −1/2 ηF( ) 		 	 	 	 	 (xi)	

Using	(x)	and	(xi)	
	

   
τ m = num

denom
= τ 0

Γ s+ 3/ 2( )
1 2( )Γ 1/ 2( )

F s−1/2 ηF( )
F −1/2 ηF( ) 	

   
τ m = num

denom
= τ 0

Γ s+ 3/ 2( )
Γ 3/ 2( )

F s−1/2 ηF( )
F −1/2 ηF( ) 	 	 	 	 	 (xii)	

	
For	non-degenerate	conditions	power	law	scattering,	and	1D,		
	

  

τ m = τ 0

Γ s+ 3/ 2( )
Γ 3/ 2( ) .	

	
	
3)	 Work	out	the	corresponding	result	in	3D.	

	
Solution:	

The	solution	proceeds	much	as	in	problem	1)	and	2).	

 

τ m =
E − EC( )τ m − ∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

k
∑

d 2( ) f0
k
∑ =

1
kBT

∂
∂ηF

E − EC( )τ m f0
k
∑
3 2 f0

k
∑ = num

denom
	

   

num = 1
kBT

∂
∂ηF

E − EC( )τ m f0
k
∑

= 1
kBT

∂
∂ηF

E − EC( )τ 0

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s

f0 4π k 2 dk
0

∞

∫

= 4πτ 0

∂
∂ηF

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s+1

f0k
2 dk

0

∞

∫ 	

	
Assuming	parabolic	energy	bands:	

   
k 2 =

2m* E − EC( )
2 	

   
dk = 2m*

2
E − EC( )−1/2

dE
				    

k 2dk =
2m*( )3/2

E − EC( )1/2

23 dE 	
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num = 4πτ 0

∂
∂ηF

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s+1

f0

2m*( )3/2
E − EC( )1/2

23 dE
EC

∞

∫
	

   
num =

2πτ 0 2m*( )3/2

3

∂
∂ηF

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s+1

E − EC( )1/2
f0 dE

EC

∞

∫
	

   
num =

2πτ 0 2m*( )3/2
kBT

3

∂
∂ηF

E − EC

kBT
⎛

⎝⎜
⎞

⎠⎟

s+3/2

f0 dE
EC

∞

∫

	Change	variables:	

   
num =

2πτ 0 2m*kBT( )3/2

3

∂
∂ηF

η s+3/2dη
1+ eη−ηF

0

∞

∫
	

    
num =

2πτ 0 2m*kBT( )3/2

3

∂
∂ηF

Γ s+5 / 2( )F s+3/2 ηF( ) 	

    
num =

2πτ 0 2m*kBT( )3/2

!3 Γ s+5 / 2( )F s+1/2 ηF( )

	 	 	 	

(xiii)

	
Now	the	denominator:	

   
denom = 3

2
f0

k
∑ = 3

2 0

∞

∫ f0 4π k 2dk
	

   
denom = 3

2 0

∞

∫ f0 4π k 2dk = 3π
0

∞

∫ f0

2m*( )3/2
E − EC( )1/2

23 dE
	

   
denom =

3π 2m*( )3/2

23
0

∞

∫ f0 E − EC( )1/2
dE

	

    
denom =

3π 2m*kBT( )3/2

23 Γ 3/ 2( )F 1/2 ηF( ) 	 	 	 	 	 (xiv)	

Using	(xiii)	and	(xiv)	

   
τ m = num

denom
= τ 0

2Γ s+5 / 2( )
3Γ 3/ 2( )

F s+1/2 ηF( )
F 1/2 ηF( ) = τ 0

Γ s+5 / 2( )
3 2( )Γ 3/ 2( )

F s+1/2 ηF( )
F 1/2 ηF( ) 	

   
τ m = τ 0

Γ s+5 / 2( )
Γ 5 / 2( )

F s+1/2 ηF( )
F 1/2 ηF( ) 	 	 	 	 	 	 (xv)	

	
For	non-degenerate	conditions	power	law	scattering,	and	3D,	
	

  

τ m = τ 0

Γ s+5 / 2( )
Γ 5 / 2( ) .	
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Summary	of	non-degenerate	results:	
	
For	power	law	scattering,	parabolic	energy	bands,	and	non-degenerate	carrier	
statistics.		the	“transport	average”	momentum	relaxation	time	in	1D,	2D,	and	3D	are:	
	

  

1D : τ m = τ 0

Γ s+ 3/ 2( )
Γ 3/ 2( )

2D : τ m = τ 0

Γ s+ 2( )
Γ 2( )

3D : τ m = τ 0

Γ s+5 / 2( )
Γ 5 / 2( )

.	 	 	 	 	 	 	 (32)	

	
Knowing	these	times,	we	get	the	mobility	from	
	

  
µ =

q τm

m* 	

The	analogous	procedure	in	the	Landauer	approach	is	to	relate	the	mobility	to	the	mean-
free-path	according	to	
	

  
µ =

Dn

kBT q
=
υT λ
2kBT q

	

	
To	compute	 λ ,	we	assume	power	law	scattering	

	

  
λ E( ) = λ0 E − EC( ) kBT⎡⎣ ⎤⎦

r

	
	
where	the	characteristic	exponent	for	the	mfp	is	“r”	rather	than	“s”.		From	the	definition	of	
the	average	mean-free-path	
	

  

λ ≡
λ E( ) M E( ) −

∂f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫

M E( ) −
∂f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫
	

	
assuming	parabolic	bands	and	nondegenerate	conditions,	we	could	express	 λ in	terms	

of	Gamma	functions.	
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IV.		Hall	Factors	
	
The	definition	of	the	Hall	factor	was	given	in	(2)	as	
	

  

rH =
τ m

2

τ m

2 .	 	 	 	 	 	 	 	 	 	 (33)	

	
We	have	worked	out	the	denominator	in	1D,	2D,	and	3D.		For	the	numerator,	we	can	
recognize	from	(4)	that	  τ m

2 	is	also	in	power	law	form.		From	(4),	we	write	

	

  
τ m E − EC( )2

= τ 0
2 E − EC( ) kBT⎡⎣ ⎤⎦

2s

,	 	 	 	 	 	 	 (34)	
	

so	we	can	evaluate	
  
τ m

2 	by	using	the	results	for	
 
τ m 	with	  s→ 2s .		

	
Hall	Factor	in	1D:	(non-degenerate)	
	

  
τ m = τ 0

Γ s+ 3/ 2( )
Γ 3/ 2( ) 	

  
τ m

2 = τ 0
2 Γ 2s+ 3/ 2( )

Γ 3/ 2( ) 	

	

  

rH =
τ m

2

τ m

2 =
τ 0

2 Γ 2s+ 3/ 2( )
Γ 3/ 2( )

τ 0

Γ s+ 3/ 2( )
Γ 3/ 2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 =
Γ 2s+ 3/ 2( )Γ 3/ 2( )

Γ s+ 3/ 2( )⎡⎣ ⎤⎦
2

	

	
Hall	Factor	in	2D:	(non-degenerate)	
	

  
τ m = τ 0

Γ s+ 2( )
Γ 2( ) 	

  
τ m

2 = τ 0
2 Γ 2s+ 2( )

Γ 2( ) 	
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rH =
τ m

2

τ m

2 =
τ 0

2 Γ 2s+ 2( )
Γ 2( )

τ 0

Γ s+ 2( )
Γ 2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 =
Γ 2s+ 2( )Γ 2( )

Γ s+ 2( )⎡⎣ ⎤⎦
2

	

	
Hall	Factor	in	3D:	(non-degenerate)	
	

  
τ m = τ 0

Γ s+5 / 2( )
Γ 5 / 2( ) 	

  
τ m

2 = τ 0
2 Γ 2s+5 / 2( )

Γ 5 / 2( ) 	

  

rH =
τ m

2

τ m

2 =
τ 0

2 Γ 2s+5 / 2( )
Γ 5 / 2( )

τ 0

Γ s+5 / 2( )
Γ 5 / 2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 =
Γ 2s+5 2( )Γ 5 2( )

Γ s+5 2( )⎡⎣ ⎤⎦
2

	

	

Summary	of	Hall	factors:		(non-degenerate)	

	

  

1D : rH =
Γ 2s+ 3/ 2( )Γ 3/ 2( )

Γ s+ 3/ 2( )⎡⎣ ⎤⎦
2

2D : rH =
Γ 2s+ 2( )Γ 2( )

Γ s+ 2( )⎡⎣ ⎤⎦
2

3D : rH =
Γ 2s+5 2( )Γ 5 2( )

Γ s+5 2( )⎡⎣ ⎤⎦
2

	 	 	 	 	 	 	 	 (35)	


