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There	are	different	ways	that	one	can	define	a	“thermal	velocity.”		It	should	not	be	
surprising	that	these	different	ways	give	different	thermal	velocities	–	they	are,	after	
all	defined	differently,	but	one	needs	to	be	sure	that	one	is	using	the	correct	thermal	
velocity	for	the	problem	of	interest.	
	
	
1)	Root	mean	square	thermal	velocity:	
Recall	that	the	kinetic	energy	of	a	dilute	gas	(e.g.	the	electrons	in	a	non-degenerate	
n-type	semiconductor)	is	  kBT 2 	per	degree	of	freedom,	so	the	average	energy	per	
electron	is	
	

  
u =

kBT
2
	 (1D)	

 u = kBT 	 (2D)	 	 	 	 	 	 	 	 (1)	

  
u =

3kBT
2

	 (3D)	

	
The	kinetic	energy	of	electrons	in	a	parabolic	band	semiconductor	is	
	

  
KE = 1

2
m*υ 2 ,	 	 	 	 	 	 	 	 	 (2)	

	
where	υ is	the	magnitude	of	the	velocity.		In	1D,	the	magnitude	is	υ ,	in	2D,	

  
υx

2 +υ y
2 ,	

and	in	3D,	
  
υx

2 +υ y
2 +υz

2 .		By	equating	the	electron	kinetic	energy	to	the	thermal	

energy,	we	find	
	

  
1
2

m*υ 2 =
kBT

2
		 (1D)	

  
1
2

m*υ 2 = kBT 	 	 (2D)	 	 	 	 	 	 	 (3)	

  
1
2

m*υ 2 =
3kBT

2
	 (3D)	
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Now	it	is	a	simple	matter	to	solve	for	the	rms	thermal	velocity	as	follows.	
	

  
υ 2 = υrms =

kBT
m* 	 	 (1D)	

  
υ 2 = υrms =

2kBT
m* 	 	 (2D)	 	 	 	 	 	 (4)	

  
υ 2 = υrms =

3kBT
m* ,	 	 (3D)	

so	the	rms	thermal	velocity	depends	on	dimensionality.	
	
	
2)	Uni-directional	thermal	velocity:	
The	unidirectional	thermal	velocity	is	the	velocity	along	one	direction.		It	is	defined	
as	follows.	
	

  

υT =
υx f0

kx >0
∑ kx( )

f0
kx >0
∑ kx( ) 	 	 	 (1D)	 	 	 	 	 (5a)	

	

  

υT =

υx f0
kx >0,ky

∑ kx ,ky( )
f0

kx >0,ky

∑ kx ,ky( ) 	 	 (2D)	 	 	 	 	 (5b)	

	

  

υT =

υx f0
kx >0,ky ,kz

∑ kx ,ky ,kz( )
f0

kx >0,ky ,kz

∑ kx ,ky ,kz( ) .	 	 (3D)	 	 	 	 	 (5c)	

	
For	a	non-degenerate	semiconductor	with	parabolic	bands,	the	Fermi	function	
simplifies	to:	
	

   f0 E( ) = e
EF −EC−

!2k2

2m*

⎛

⎝
⎜

⎞

⎠
⎟ kBT

= e EF −EC( ) kBT × e−!2k2 2m*kBT( ) .	
	

Now	let’s	work	it	out	in	3D.	
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υT =

υx
kx >0,ky ,kz

∑ e
−!2k2 2m*kBT( )

e
−!2k2 2m*kBT( )

kx >0,ky ,kz

∑
=

!kx

m* e
−!2kx

2 2m*kBT( ) dkx
0

∞

∫

e
−!2kx

2 2m*kBT( ) dkx
0

∞

∫
×

e
−!2ky

2 2m*kBT( ) dky
−∞

∞

∫

e
−!2ky

2 2m*kBT( ) dky
−∞

∞

∫
×

e
−!2kz

2 2m*kBT( ) dkz
−∞

∞

∫

e
−!2kz

2 2m*kBT( ) dkz
−∞

∞

∫
	

   

υT =

!kx

m* e
−!2kx

2 2m*kBT( ) dkx
0

∞

∫

e
−!2kx

2 2m*kBT( ) dkx
0

∞

∫
=

2kBT
πm*

	

	 (1D),	(2D),	and	(3D)	 	 (6)	

	
We	can	see	that	if	we	do	this	in	1D,	2D,	or	3D,	we	will	get	the	same	result,	so	there	
unidirectional	thermal	velocity	is	the	same	in	1D,	2D,	and	3D.		This	makes	sense	
because	it	is	always	the	average	velocity	in	one	(positive)	direction.	
	
	
3)	Richardson	velocity:	
In	Schottky	barrier	problems,	one	often	encounters	the	“Richardson	velocity”,	 υR ,	
which	is	defined	as	
	

  

υT =
υx f0

kx >0
∑ kx( )

f0
kx

∑ kx( ) .	 	 	 	 	 	 	 	 (7)	

The	Richardson	velocity	is	simply	

  
υR =

υT

2
.	 	 	 	 	 	 	 	 	 (8)	

	
	
We	see	that	there	are	different	thermal	velocities	depending	on	how	we	choose	to	
define	them.		Since	we	are	interested	in	current	flow	along	one	direction,	the	uni-
directional	thermal	velocity	is	relevant	for	us	in	this	course.	
	
The	bottom	line	is	that	if	someone	tells	you	that	they	used	the	“thermal	velocity”	for	
a	problem,	you	should	ask:	“What	thermal	velocity?”	


