Quiz Week 12 ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2017

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

1) In class, we wrote the general balance equation for a quantity, n_{ϕ} , as

$$\frac{\partial n_{\phi}}{\partial t} = -\nabla \cdot \vec{F}_{\phi} + G_{\phi} - R_{\phi}.$$
 What assumption is this equation based upon?

- a) That the semiconductor is non-degenerate.
- b) That the band structure is parabolic.
- c) That the temperature is uniform.
- d) That the electron temperature is equal to the phonon temperature.
- e) Only that the BTE is valid.
- 2) If $\phi(\vec{p}) = (E F_n)\vec{v}$, where E is the total energy, then what is the associated flux in the balance equation?
 - a) The kinetic energy flux.
 - b) The total energy flux.
 - c) The heat flux.
 - d) The internal energy flux.
 - e) The particle flux.
- 3) What is the quantity, $-q\mathcal{E}_i \left\{ \frac{1}{\Omega} \sum_{\bar{p}} \frac{\partial \phi}{\partial p_i} f \right\}$?
 - a) The "physical quantity" term in the balance equation.
 - b) The "associated flux" in the balance equation.
 - c) The "generation term" in the balance equation.
 - d) The "recombination" term in the balance equation.
 - e) The drift term in the "associated flux".
- 4) When we write the recombination term as $R_{\phi} = \left(n_{\phi} n_{\phi}^{0}\right) / \left\langle \tau_{\phi} \right\rangle$, what assumption are we making?
 - a) Near equilibrium.
 - b) The Relaxation Time Approximation.
 - c) Non-degenerate carrier statistics.
 - d) Steady-state conditions.
 - e) Only that the BTE is valid.

(continued on next page)

- 5) When we write the 1D current equation as $I_x = n_L q \mu_n \mathcal{E}_x + q D_n dn_L/dx$, what assumptions are we making?
 - a) Near-equilibrium conditions.
 - b) Time variations slow in comparison to the momentum relaxation time.
 - c) Uniform temperature.
 - d) All of the above.
 - e) b) and c) above.
- 6) When we write a balance equation for a quantity, n_{ϕ} , we always end up with an unknown, that we must write a new balance equation for. What is this unknown?
 - a) The associated flux for the quantity.
 - b) The generation term for the quantity.
 - c) The recombination term for the quantity.
 - d) The recombination time in the recombination term .
 - e) The electron temperature.
- 7) What does moment equation does $\phi(\vec{p}) = v_x(p^2/2m^*)$ give us?
 - a) The carrier continuity equation.
 - b) The carrier flux equation.
 - c) The carrier energy balance equation.
 - d) The carrier energy flux equation.
 - e) The carrier energy squared continuity equation.
- 8) What is the quantity, W_{xx} for parabolic energy bands?
 - a) The total energy density.
 - b) The kinetic energy density.
 - c) The kinetic energy density associated with one of the degrees of freedom.
 - d) The electron temperature.
 - e) The heat flux.
- 9) How is the hierarchy of balance equations terminated?
 - a) By assuming near-equilibrium conditions.
 - b) By assuming the Relaxation Time Approximation.
 - c) By invoking the Onsager Relations.
 - d) By expressing all of the quantities in the set of equations only in terms of quantities in same set of equations.
 - e) By using the NEGF equation.

(continued on next page)

- 10) When we write the recombination term in the various balance equations as $R_{\phi} = \left(n_{\phi} n_{\phi}^{0}\right) / \left\langle \tau_{\phi} \right\rangle$, sometimes a term corresponding to n_{ϕ} appears and a term corresponding to n_{ϕ}^{0} does not appear. Why?
 - a) Under near-equilibrium conditions.
 - b) Under spatially uniform conditions.
 - c) When the balance equation corresponds to a moment higher than 2.
 - d) When the balance equation corresponds to a moment higher than 3.
 - e) When the quantity in the balance equation is a flux.
- 11) When we write a drift-diffusion equation in the form, $J_{nj} = nq\mu_n \mathcal{E}_j + \frac{2}{3}\mu_n \frac{\partial W}{\partial x_j}$, what assumption are we making?
 - a) Non-degenerate carrier statistics.
 - b) The temperature does not vary with position.
 - c) The electron temperature is equal to the lattice temperature.
 - d) The kinetic energy is equally distributed between the three degrees of freedom.
 - e) Only that the BTE is valid.