Quiz Week 15 ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2017

Answer the **multiple choice questions** below by choosing the **one**, **best answer**.

- 1) What are the proper boundary conditions for the 1D BTE?
 - a) The carrier densities at the two contacts.
 - b) The incident and emerging fluxes at the two contacts.
 - c) The incident and emerging fluxes at one of the two contacts.
 - d) The incident fluxes at the two contacts.
 - e) The carrier densities at the two contacts.
- 2) In a ballistic device, the states in the devices fall into what classes?
 - a) Spin up and spin down states.
 - b) Those fillable from contact one and those fillable from contact two.
 - c) Those fillable from contact one, those fillable from contact two, and those not fillable.
 - d) Conduction and valence band states.
 - e) None of the above.
- 3) Consider a semi-classical ballistic device with two contacts. Which of the following statements is true?
 - a) The population of states is described by Fermi functions in the contacts.
 - b) The population of states in the device is described by two different Fermi functions.
 - c) Well-defined Fermi levels exist in each of the two contacts.
 - d) The distribution function in the device, f(E), can be much different in shape from an equilibrium distribution, $f_0(E)$.
 - e) All of the above.

(continued on next page)

- 4) The density of states in a 1D semiconductor is $D_{1D}(E) = 1/(\pi\hbar)\sqrt{2m^*/(E-E_C)}$. What is the "local density of states" in a ballistic device?
 - a) The above expression with the position-dependent conduction band edge, $E_c(x)$.
 - b) A concept that occurs only when quantum effects modify the density-of-states in a small device.
 - c) A concept that occurs in heterostructures when both $E_{c}(x)$ and $m^{*}(x)$ are position dependent.
 - d) The division of the DOS into parts fillable by each of the two contacts.
 - e) A quantity related to the DOS that depends on the local value of the quasi-Fermi level, $F_n(x)$.
- 5) Which of the following is true about a ballistic device with two, ideal Landauer contacts at different voltages?
 - a) The distribution function in the device is a Fermi-Dirac distribution with the average Fermi level of the two contacts .
 - b) The distribution function in the device is a Fermi-Dirac distribution with the Fermi level of the contact with the more positive potential.
 - c) The distribution function in the device is a Fermi-Dirac distribution with the Fermi level of the contact with the more negative potential.
 - d) Each state in the device is in equilibrium with one of the two contacts.
 - e) Each state in the device is in equilibrium with both the two contacts