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SOLUTIONS:		ECE	656	Homework	1:		Week	1		
Mark	Lundstrom	
Purdue	University	

	
To	complete	this	HW	assignment,	you	will	need	a	basic	familiarity	with	Fermi-Dirac	integrals.		

A	good	reference	is	the	following.	

	
R.	Kim	and	M.	Lundstrom,	“Notes	on	Fermi-Dirac	Integrals,”	3rd	Ed.,	

https://www.nanohub.org/resources/5475	

	
	

1) Working	out	Fermi-Dirac	integrals	just	takes	some	practice.		For	practice,	work	out	the	
integral	

	

  
I1 = M E( ) f0 E( )dE

−∞

∞

∫ 		

where	

	

  
f0 E( ) = 1

1+ e E−EF( ) kBT
	

and	

	

   
M E( ) =W

2m* E − EC( )
π

H E − EC( ) 		
where	
	

 H E − EC( ) 	is	the	unit	step	function.	
	

Solution:	
	

   
I1 = W

2m* E − EC( )
π

1
1+ e E−EF( ) kBT

dE
EC

∞

∫ 	

Note	that	the	unit	step	function	in	 M E( ) 	makes	the	lower	limit	of	the	integral	 EC .	

   
I1 =W 2m*

π
E − EC( )1/2

1+ e E−EF( ) kBT
dE

EC

∞

∫ 	

Now	make	the	change	in	variables,	 η = E − EC( ) kBT 	and	 ηF = EF − EC( ) kBT 	to	find:	
	

   
I1 =W 2m*

π
kBTη( )1/2

1+ eη−ηF
kBT( )dη

0

∞

∫
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ECE	656	Homework	1:		Week	1		(continued)	

	

   
I1 =W 2m*

π
kBT( )3/2 η1/2

1+ eη−ηF
dη

0

∞

∫
	

	

Now	we	can	recognize	the	FD	integral	of	order	½:	

	

   

η1/2

1+ eη−ηF
dη

0

∞

∫ = π
2

F 1/2 ηF( ) 	
	

so	the	result	becomes	

	

    
I1 =W m* 2π


kBT( )3/2

F 1/2 ηF( ) ,	
which	is	the	final	answer.	

	

	
2) For	more	practice,	work	out	the	integral	in	1)	assuming	non-degenerate	carrier	statistics.	
	

Solution:	
	

We	could	approximate	the	Fermi	function	as	
	

  
f0 E( ) = 1

1+ e E−EF( ) kBT
≈ e EF −E( ) kBT

	

	
and	then	work	out	the	integral	

	

   
I1 = W

2m* E − EC( )
π!

1
1+ e E−EF( ) kBT

dE
EC

∞

∫ ≈ W
2m* E − EC( )

π!
e EF −E( ) kBT dE

EC

∞

∫ ,	

	

but	it	is	easier	to	recognize	that	“non-degenerate”	means	 EF << E 		or	  ηF << 0 		and	that	
	

   F 1/2 ηF( )→ exp ηF( )   for ηF << 0
	

so	we	can	use	the	result	of	prob.	1)	and	write	the	answer	as	
	

   
I1 ≈W m* 2π


kBT( )3/2

exp ηF( )
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ECE	656	Homework	1:		Week	1		(continued)	
	
3) For	still	more	practice,	work	out	this	integral:	
	

  
I2 = M E( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE
EC

∞

∫ ,	

	

where	 M E( ) 	is	as	given	in	problem		1).	
	

Solution:	
	
From	the	form	of	the	Fermi	function,	we	see	that	

	

	  
−
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟
= +

∂ f0

∂EF

⎛

⎝⎜
⎞

⎠⎟ 	
	

so	the	integral	becomes	
	

  
I2 = M E( ) +

∂ f0

∂EF

⎛

⎝⎜
⎞

⎠⎟
dE

EC

∞

∫ .	

	
Since	we	are	integrating	with	respect	to	energy,	not	Fermi	energy,	we	can	move	the	

derivative	outside	of	the	integral	to	write	

	

  
I2 =

∂
∂EF

M E( ) f0 E( )dE
EC

∞

∫ = 1
kBT

∂
∂ EF kBT( ) M E( ) f0 E( )dE

EC

∞

∫ = 1
kBT

∂
∂ηF

M E( ) f0 E( )dE
EC

∞

∫
	

The	integral	can	be	recognized	as	the	one	we	worked	out	in	prob.	1),	so	

	

    
I2 =

1
kBT

∂
∂ηF

I1 =
1

kBT
∂

∂ηF

W m* 2π


kBT( )3/2
F 1/2 ηF( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=W

m*kBT 2π


∂
∂ηF

F 1/2 ηF( )
	

	
Finally,	using	the	differentiation	property	of	FD	integrals,	   

∂F j ∂ηF =F j−1 	,	we	find	

	

    
I2 =W

m*kBT 2π


F −1/2 ηF( )
	

	

The	trick	of	replacing	  −∂ f0 ∂E 	with	  +∂ f0 ∂EF 	and	then	moving	the	derivative	outside	

of	the	integral	is	very	useful	in	evaluating	FD	integrals.	
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ECE	656	Homework	1:		Week	1		(continued)	
	
4) It	is	important	to	understand	when	Fermi-Dirac	statistics	must	be	used	and	when	non-

degenerate	(Maxwell-Boltzmann)	statistics	are	good	enough.		The	electron	density	in	1D	
is	

   nL = N1DF −1/2 ηF( ) cm-1 	,	

where	  N1D 	is	the	1D	effective	density	of	states	and	 ηF = EF − EC( ) kBT 	.		In	3D,		
	

   n = N3DF 1/2 ηF( ) cm-3 .	

	

For	Maxwell	Boltzmann	statistics	

  nL
MB = N1D exp ηF( ) cm-1 	

  n
MB = N3D exp ηF( ) cm-3 .	

	

Compute	the	ratios,	 nL nL
MB 	and	 n nMB 	for	each	of	the	following	cases:	

a)		  ηF = −10 		
b)		  ηF = −3 	
c)		  ηF = 0

	
d)		  ηF = 3 	
e)		  ηF = 10 	

	

Note	that	there	is	a	Fermi-Dirac	integral	calculator	available	on	nanoHUB.org.		An	iPhone	app	
is	also	available.	

	

Solution:	
	
The	iPhone	app	is	called:		“FD	Integral”	

The	nanoHUB.org	app	is	at:		nanohub.org/resources/11396	
	

a)	eta_F	=	-10:	

   nL nL
MB =F −1/2 ηF( ) exp ηF( ) =F −1/2 −10( ) exp −10( ) = 4.54×10−5 4.54×10−5 = 1

	
	

   
nL nL

MB =F −1/2 −10( ) exp −10( ) = 1 	

	

   n nMB =F +1/2 ηF( ) exp ηF( ) =F +1/2 −10( ) exp −10( ) = 4.54×10−5 4.54×10−5 = 1 	
	

   
n nMB =F +1/2 −10( ) exp 10( ) = 1
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ECE	656	Homework	1:		Week	1		(continued)	
	
b)	eta_F	=	-3:	
	

   nL nL
MB =F −1/2 ηF( ) exp ηF( ) =F −1/2 −3( ) exp −3( ) = 4.81×10−2 4.98×10−2 = 0.97

	
	

   
nL nL

MB =F −1/2 −3( ) exp −3( ) = 0.97 	

	

   n nMB =F +1/2 ηF( ) exp ηF( ) =F +1/2 −3( ) exp −3( ) = 4.89×10−2 4.98×10−2 = 0.98 	
	

   
n nMB =F +1/2 −3( ) exp −3( ) = 0.98 	

	

c)	eta_F	=	0:	
	

   nL nL
MB =F −1/2 ηF( ) exp ηF( ) =F −1/2 0( ) exp 0( ) = 6.05×10−1 1= 0.61

	
	

   
nL nL

MB =F −1/2 −3( ) exp −3( ) = 0.61 	

	

   n nMB =F +1/2 ηF( ) exp ηF( ) =F +1/2 0( ) exp 0( ) = 7.65×10−1 1= 0.77 	
	

   
n nMB =F +1/2 −3( ) exp −3( ) = 0.77 	

	

d)	eta_F	=	+3:	
	

   nL nL
MB =F −1/2 ηF( ) exp ηF( ) =F −1/2 3( ) exp 3( ) = 1.85×100 2.01×101 = 0.092

	
	

   
nL nL

MB =F −1/2 3( ) exp 3( ) = 0.092
	

	

   n nMB =F +1/2 ηF( ) exp ηF( ) =F +1/2 3( ) exp 3( ) = 4.49×100 2.01×101 = 0.22 	
	

   
n nMB =F +1/2 3( ) exp 3( ) = 0.22 	
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ECE	656	Homework	1:		Week	1		(continued)	
	
e)	eta_F	=	+10:	
	

   nL nL
MB =F −1/2 ηF( ) exp ηF( ) =F −1/2 10( ) exp 10( ) = 3.55×100 2.20×104 = 1.610×10−4

	
	

   
nL nL

MB =F −1/2 10( ) exp 10( ) = 1.61×10−4 	

	

   n nMB =F +1/2 ηF( ) exp ηF( ) =F +1/2 10( ) exp 10( ) = 2.41×101 2.20×104 = 1.10×10−3 	

	

   
n nMB =F +1/2 10( ) exp 10( ) = 1.10×10−3 	

	

We	see	that	the	carrier	density	computed	with	Fermi-Dirac	statistics	is	equal	to	the	

carrier	density	computed	with	Maxwell-Boltzmann	(nondegenerate)	carrier	statistics	
when	the	semiconductor	is	nondegenerate,	but	it	is	a	small	fraction	of	the	carrier	density	

computed	with	Maxwell-Boltzmann	statistics	when	the	semiconductor	is	degenerate.	We	
also	see	that	the	influence	of	FD	statistics	is	stronger	in	1D	than	in	3D.	

	

	

5) Consider	GaAs	at	room	temperature	doped	such	that		  n = 1019 cm-3 .		The	electron	density	

is	related	to	the	position	of	the	Fermi	level	according	to	

	

   n = NCF 1/2 ηF( ) cm-3 	

	

where	
	

  NC = 4.21×1017 cm-3 .	

	

Determine	the	position	of	the	Fermi	level	relative	to	the	bottom	of	the	conduction	band,	 EC .	

a) assuming	Maxwell-Boltzmann	carrier	statistics	
b) NOT	assuming	Maxwell-Boltzmann	carrier	statistics	

	

Solution:	
a)		   n = NCF 1/2 ηF( )→ n = NC exp ηF( ) cm-3

	

  
ηF =

EF − EC

kBT
= ln n

NV

⎛

⎝⎜
⎞

⎠⎟
= ln 1019

4.21×1017

⎛
⎝⎜

⎞
⎠⎟
= 3.17

	

  EF = EC + 3.17 × 0.026 eV = EC + 0.082 eV 		

	

  
EF = EC + 0.082 eV
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ECE	656	Homework	1:		Week	1		(continued)	
	
	

b)		   n = NCF 1/2 ηF( ) cm-3

	
	

   
ηF =F 1/2

−1 n NC( ) =F 1/2
−1 1019 4.21×1017( ) =F 1/2

−1 23.75( ) = 9.91
	

	

  EF = EC + 9.91× 0.026 eV = EC + 0.26 eV
	

	

  
EF = EC + 0.26 eV

	

	

	

Assuming	Maxwell-Boltzmann	statistics,	we	find	a	Fermi	level	that	is	just	a	little	above	 EC ,	

but	for	Fermi-Dirac	statistics,	we	see	that	the	Fermi	level	is	  10kBT 	above	 EC .		This	is	a	

significant	difference,	and	might	be	important	for	some	problems.		For	example,	in	this	case,	

the	Fermi	level	is	well	above	the	bottom	of	the	band	where	conduction	band	non-parabolicity	
may	be	important.	

	
	


