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SOLUTIONS:		ECE	656	Homework	2	(Week	2)	
Mark	Lundstrom	
Purdue	University	

	
1) Assume	T	=	0K	and	work	out	the	electron	density	per	unit	area	for	two	cases:	

	
i) A	2D	semiconductor	with	parabolic	energy	bands	and	an	effective	mass	of	m*.	

(Assume	a	valley	degeneracy	of	2.)	
	

ii) Graphene,	where	we	consider	E	>	0	to	be	the	conduction	band.		(E	=	0	is	where	the	
bands	cross,	the	so-called	Dirac	point.)	(Assume	a	valley	degeneracy	of	2.)	

	
1a)	 Express	your	two	answers	in	terms	of	the	Fermi	energy,	and	show	that	they	are	

different.	
	
1b)	 Express	your	two	answers	in	terms	of	the	Fermi	wavevector	and	show	that	they	are	

the	same.	
	
Solution:	
	
1a)	In	terms	of	energy:	

Case	i):		parabolic	energy	bands:		DOS:		

   
D2 D E( ) = gV

m*

π2 = 2m*

π2 E > EC = 0( ) 		

  
nS = D2 D

EC

∞

∫ E( ) f0 E( )dE = nS = D2 D
EC

EF

∫ E( ) 1( )dE 		 (T	=	0	K)	

   
nS = gV

m*

π!2
EC

EF

∫ dE = 2 m*

π!2 EF − EC( ) 	

   
nS = gV

m*

π!2 EF − EC( ) = 2m*

π!2 EF − EC( ) 	

	
Case	ii):		graphene:		DOS:		
	

   
D2 D E( ) = gV

E
π2υF

2 = 2E
π2υF

2 E > 0( ) 	 (valley	degeneracy	is	2	for	graphene)	

	
Aside:		Note	that	if	we	define	the	effective	mass	of	graphene	by	  E ≡ m*υF

2 	then	
we	could	use	the	parabolic	band	DOS	and	get	the	right	DOS	for	graphene!	

  
nS = D2 D

0

∞

∫ E( ) f0 E( )dE = nS = D2 D
0

EF

∫ E( ) 1( )dE 		 (T	=	0	K)	
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nS =

2E
π2υF

2
0

EF

∫ dE =
EF

2

π2υF
2 	

	

   
nS =

EF
2

π2υF
2 	

	
1b)	In	terms	of	the	Fermi	wave	vector,	kF	:	
	

Case	i):		parabolic	energy	bands:		DOS:		

   

!2k 2

2m* = E − EC E > EC( ) 		
	

   

!2kF
2

2m* = EF − EC = EF E > EC( ) 	

   
nS =

2m*

π!2 EF − EC( )→ nS =
2m*

π!2 ×
!2kF

2

2m* = gV ×
kF

2

2π
	

  
nS = gV

kF
2

2π
=

kF
2

π
	

	
Case	ii):		graphene:		DOS:		
	

   E = υF k E > 0( ) 	
   EF = υF kF EF > 0( ) 	

   
nS =

EF
2

π2υF
2 →

υF kF( )2

π2υF
2 =

kF
2

π
	

  
nS =

kF
2

π
	 (same	as	for	parabolic	energy	bands)	

	
Aside:		Why	are	the	two	expressions	the	same?	
At	T	=	0	K,	all	of	the	states	with	 k < kF 	are	occupied	and	all	for	 k > kF 	are	empty.	
The	area	of	occupied	k-space	is	  π kF

2 		

In	2D,	each	state	occupies	an	area	in	k-space	of	  2π( )2
A 		

So	the	number	of	states	occupied	is:	
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ECE	656	Homework	2:		(Week	2)		(continued)	
	

  

N =
π kF

2

2π( )2
A
× 2× gV 		

where	the	factor	of	2	is	for	spin	degeneracy	and	 gV is	the	valley	degeneracy.		The	sheet	
carrier	density	is	

  
nS =

N
A
=

kF
2

2π
× gV =

kF
2

π
	(because	valley	degeneracy	is	2	for	both	cases	consider	here.)	

	
Working	in	k-space,	we	get	the	same	answer	for	the	two	different	band	structures,	
because	the	DOS	in	k-space	does	not	depend	on	band	structure.	

	
	
2)	 Assume	a	finite	temperature	and	work	out	the	sheet	carrier	densities,	 nS ,	for:	
	

2a)	 Electrons	in	the	conduction	band	of	a	2D	parabolic	band	semiconductor	
	

2b)	 Electrons	in	the	conduction	band	(E	>	0)	of	graphene.	
	

Your	answers	to	these	questions	should	be	in	terms	of	material	parameters	and	the	Fermi	
level.	
	

Solution:	
	

2a)		parabolic	energy	bands	

   
nS = D2 D

EC

∞

∫ E( ) f0 E( )dE = gV

m*

π2

⎛
⎝⎜

⎞
⎠⎟EC

∞

∫
1

1+ e E−EF( ) kBT
dE 	

	

   
nS = gV

m*

π2

⎛
⎝⎜

⎞
⎠⎟

1
1+ e E−EF( ) kBT

EC

∞

∫ dE = gV

m*

π2

⎛
⎝⎜

⎞
⎠⎟

1
1+ e E−EC+EC−EF( ) kBT

EC

∞

∫ dE
	

	

define:	

 
ηF =

EF − EC

kBT
		

 
η =

E − EC

kBT
	

 
dη = dE

kBT
	  dE = kBTdη 	

with	this	change	of	variables,	we	find:	
	

   
nS = gV

m*

π2

⎛
⎝⎜

⎞
⎠⎟

kBTdη
1+ eη−ηF

0

∞

∫
	

the	integral	can	be	done	analytically:	
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ECE	656	Homework	2:		(Week	2)		(continued)	

	

  

dη
1+ eη−ηF

0

∞

∫ = ln 1+ eηF( )
	

but	we	also	recognize	it	as	a	Fermi-Dirac	integral	of	order	0:	

	

   
F 0 ηF( ) = ln 1+ eηF( )

	
so	the	answer	is:	

	

    

nS = N2 DF 0 ηF( )
N2 D = gv

m*kBT
π2 	

	
2b)		graphene	
	

   
nS = D2 D

EC

∞

∫ E( ) f0 E( )dE = 2E
π2υF

2

⎛

⎝⎜
⎞

⎠⎟0

∞

∫
1

1+ e E−EF( ) kBT
dE 	

define:	

	

 
ηF =

EF

kBT
	 	

 
η = E

kBT
	  E = kBTη 	

 
dη = dE

kBT
	  dE = kBTdη 	

	

   
nS =

2
π2υF

2

⎛

⎝⎜
⎞

⎠⎟
E

1+ e E−EF( ) kBT
0

∞

∫ dE = 2
π2υF

2

⎛

⎝⎜
⎞

⎠⎟
kBTη

1+ eη−ηF
0

∞

∫ kBTdη = 2
π

kBT
υF

⎛

⎝⎜
⎞

⎠⎟

2
ηdη

1+ eη−ηF
0

∞

∫ 	

	
The	integral	is	recognized	as	a	Fermi-Dirac	integral	of	order	1:	
	

    
nS =

2
π

kBT
υF

⎛

⎝⎜
⎞

⎠⎟

2
ηdη

1+ eη−ηF
0

∞

∫ = 2
π

kBT
υF

⎛

⎝⎜
⎞

⎠⎟

2

F 1 ηF( ) 	
	

    

nS = N2 DF 1 ηF( )

N2 D = 2
π

kBT
υF

⎛

⎝⎜
⎞

⎠⎟

2 	
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ECE	656	Homework	2:		(Week	2)		(continued)	
	

3) Assume	T	=	0K	and	work	out	the	average	+x-directed	velocity	for	electrons	in:	
	

3a)	 A	2D	semiconductor	with	a	parabolic	conduction	band	and	
	
3b)	 	The	conduction	band	(E	>	0)	of	graphene.	

	
Your	answer	should	be	in	terms	of	the	Fermi	energy,	 EF .	

	
Solution:	
	

3a)		parabolic	energy	bands	
	

   

υx
+ =

υx


k( ) f0 E( )

kx>0,ky

∑
f0 E( )

kx>0,ky

∑
=

k dk dθ
−π /2

+π /2

∫ υx f0
0

∞

∫

k dk dθ
−π /2

+π /2

∫ f0
0

∞

∫
= num

den
		(DOS	in	k-space	cancels	from	num	

and	denom)	
	

   
num = k dk dθ

−π /2

+π /2

∫ υx f0
0

∞

∫ = k dk dθ
−π /2

+π /2

∫
k
m* cosθ f0

0

∞

∫ 	

	

  f0 = 1 k < kF E < EF( ) 	
	

   
num = k dk dθ

−π /2

+π /2

∫
k
m* cosθ =

0

kF

∫


m* k 2 dk cosθ dθ
−π /2

+π /2

∫ = 
m*

kF
3

3

⎛

⎝⎜
⎞

⎠⎟
× 2

0

kF

∫ 	

	

   
num = 2

3
⎛
⎝⎜

⎞
⎠⎟
kF

3

m*

⎛

⎝⎜
⎞

⎠⎟
	 (*)	

	

  
denom = k dk dθ

−π /2

+π /2

∫ f0
0

∞

∫ = k dk dθ
−π /2

+π /2

∫ =
0

kF

∫ k dk dθ
−π /2

+π /2

∫ =
0

kF

∫
kF

2

2
×π 	 (**)	

	
Using	(*)	and	(**)	
	

   
υx

+ = num
denom

=

2
3

⎛
⎝⎜

⎞
⎠⎟
kF

3

m*

⎛

⎝⎜
⎞

⎠⎟

π kF
2 2

= 4
3π
kF

m* = 4
3π

υF 	
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ECE	656	Homework	2:		(Week	2)		(continued)	
	

  
υx

+ = 4
3π

υF 	

Makes	sense…..	ave.	x-directed	velocity	must	be	less	than	the	maximum		
velocity	of	electrons	in	the	conduction	band,	 υF .	
	
3b)		graphene	
	

   

υx
+ =

υx


k( ) f0 E( )

kx>0,ky

∑
f0 E( )

kx>0,ky

∑
=

k dk dθ
−π /2

+π /2

∫ υx f0
0

∞

∫

k dk dθ
−π /2

+π /2

∫ f0
0

∞

∫
= num

den
	

	

  
num = k dk dθ

−π /2

+π /2

∫ υx f0
0

∞

∫ = k dk dθ
−π /2

+π /2

∫ υF cosθ f0
0

∞

∫ 	

	

  f0 = 1 k < kF E < EF( ) 	
	

  
num = k dk dθ

−π /2

+π /2

∫ υF cosθ =
0

kF

∫ υF k dk cosθ dθ
−π /2

+π /2

∫ =υF

kF
2

2

⎛

⎝⎜
⎞

⎠⎟
× 2

0

kF

∫ 	

	

  num =υF kF
2 	 (*)	

	

  
den = k dk dθ

−π /2

+π /2

∫ f0
0

∞

∫ = k dk dθ
−π /2

+π /2

∫ =
0

kF

∫ k dk dθ
−π /2

+π /2

∫ =
0

kF

∫
kF

2

2
×π 	 (**)	

	
	
From	(*)	and	(**),	we	find:	
	

  
υx

+ = num
den

=
υF kF

2

kF
2π 2

= 2
π
υF 	

	

  
υx

+ = 2
π
υF 	
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ECE	656	Homework	2:		(Week	2)		(continued)	
	
4)	 Assume	a	nonparabolic,	1D	energy	bandstructure	described	by:	
	

 
E kx( ) 1+αE kx( )⎡⎣ ⎤⎦ =

2kx
2

2m* 0( ) .	
where	

	

 

1
m* 0( ) =

1
2
d 2E kx( )
dkx

2
kx =0 .	

	
	
4a)		 Sketch	(or	produce	a	Matlab	plot)	of	E(k)	vs.	k	for	two	cases:	i)	α = 0 	and	ii)	α > 0 .		If	you	

are	producing	a	Matlab	plot,	the	energy	range	should	be	from	0	to	1	eV,	and	you	can	
assume	α = 0.5 	eV.	
	
Solution:	
	
We	can	see	from	the	equation,	that	for	a	given	E,	the	left	hand	side	will	be	bigger	than	
for	a	parabolic	energy	band,	so	it	will	take	a	bigger	kx	for	that	E.		The	bands	flatten	out	
as	shown	below.	
	
	

	
	
	
4b)	 For	this	bandstructure,	derive	an	expression	for	the	velocity,	υx kx( ) 	as	a	function	of	

kx .	
	
Solution:	
Velocity	is	related	to	bandstructure	by:	

 
υx =

1

dE
dkx 	
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ECE	656	Homework	2	(Week	2)		(continued)	
	

 
E +αE2 = 2kx

2

2m* 0( ) 	

	

 

dE
dkx

+ 2αE dE
dkx

= 
2kx

m* 0( ) 	

	

 

dE
dkx

1+ 2αE( ) = 
2kx

m* 0( ) 	

	

 

1

dE
dkx

= 1

2kx
m* 0( )

1
1+ 2αE( ) =υx 	

	

 
υx =

kx
m* 0( )

1
1+ 2αE( ) 	

	
alternatively,	we	could	define	an	energy	dependent	effective	mass	by:	
	
m* E( ) = m* 0( ) 1+ 2αE( ) 	
	
and	write	the	velocity	as	

 
υx =

kx
m* E( ) 	

	
	
5)	 For	parabolic	energy	bands,	the	2D	density	of	states	is	
	

   
D2 D E( ) = gv

m*

π !2 Θ E − ε1( ) 		.	
	

Assume	a	non-parabolic	band	described	by	the	so-called	Kane	dispersion,	
	

   
E k( ) 1+αE k( )⎡⎣ ⎤⎦ =

2k 2

2m* 0( ) 	,	
and	derive	the	density	of	states.	
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ECE	656	Homework	2	(Week	2)		(continued)	
	

Solution:	
First,	find	the	number	of	states	in	2D	k-space:	

  

N k( )dkxdky =
A

2π( )2 × 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2π kdk = A
2π 2 2π kdk = A

π
kdk 		

Note	that	
 
N k( )dkxdky 	is	the	number	of	states	per	unit	area.		Now	map	these	states	

onto	energy:	

  
D2 D E( )dE = gv

1
A

N k( )dk = 1
π

kdk 	

	
Note	that	by	convention,	  D2 D E( )dE 	is	the	number	of	states	per	unit	area.		Solve	for	

  D2 D E( ) :	
	

  
D2 D E( ) = gv

1
A

N k( ) dk
dE

= gv

1
π

k dk
dE

	 	 (*)	

	
The	bandstructure	is:	

   
E +αE2 = 2k 2

2m* 0( ) 	
	
Differentiate	with	respect	to	k:	
	

  

d E +αE2( )
dk

= dE
dk

1+ 2αE( )
	

from	which	we	find	

   
1+ 2αE = 2

m* 0( ) k dk
dE

	

	

   
k dk

dE
=

m* 0( )
2 1+ 2αE( ) 	 	 	 (**)	

	
Now	insert	(**)	into	(*)	to	find:	
	

   
D2 D E( ) = gv

m* 0( )
π!2 1+ 2αE( )

	
So	the	2D	DOS	increases	linearly	with	energy	when	we	take	conduction	band	non-
parabolicity	into	account.	
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ECE	656	Homework	2	(Week	2)		(continued)	
	
6)	 Derive	an	expression	for	the	2D	density	of	states	for	one	of	the	conduction	band	ellipsoids	

in	silicon.			
	
	
	
	
	
	
	
	
	
	
	
	
	

HINT:				You	may	find	he	discussion	in	Pierret	(Advanced	Semiconductor	Fundamentals)	
on	pp.	94-95	helpful.	

	
	

Solution:	
	
In	this	case,	we	write	

  
E kx ,ky( ) 	as:	

	

   
E =
2kx

2

2mxx
* +
2ky

2

2myy
* 	

	
For	the	case	shown,	  mxx

* 	is	the	longitudinal	effective	mass	and	
  
myy

* 	is	the	transverse	
effective	mass.	
	

Re-write	
   
E =
2kx

2

2mxx
* +
2ky

2

2myy
* 	as	

   

E = 
2

2m0

m0

mxx
* kx

⎛

⎝
⎜

⎞

⎠
⎟

2

+
m0

myy
* ky

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	

	
Now	define	a	“stretched”	k-space:	
	

   

kx =
m0

mxx
* kx 	 	

   

ky =
m0

myy
* ky 	

	
	
	

kx	

ky	

mDOS
* = ?
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ECE	656	Homework	2	(Week	2)		(continued)	
	
	
Now	we	can	write	the	E(k)	in	the	stretched	k-space:	
	

   
E kx , ky( ) = 

2

2m0
*
kx

2 + ky
2( ) = 

2 k 2

2m0
* ,	 	 (*)	

	
which	looks	like	a	simple,	circular	band	in	2D.		But	we	must	realize	that	states	are	
spaced	  2π Lx( ) 	in	 kx ,	but	they	are	spaced	  2π Lx( )× m0 mxx 	in	  

kx .		Accordingly,	we	
find	
	

   

N k( )dkxdky =
A

2π( )2 × 2×
mxxmyy

m0

d kxd ky =
A

2π 2

mxxmyy

m0

2π kd k = A
π

mxxmyy

m0

kd k 	

	

   
D2 D E( )dE = 1

A
N k( )dkxdky =

1
π

mxxmyy

m0

k d k 	

	
or,	solving	for	the	DOS:	

   
D2 D E( ) = 1

π
mxxmyy

m0

k
d k
dE

		 	 	 	 (**)	

	
Now	use	(*)	to	find:	
	

   
k d k

dE
=

m0

2 	

	
and	insert	this	in		(**)	to	find	
	

   
D2 D E( ) = gV

m0

π2

mxxmyy

m0

= gV

mxxmyy

π2
	

	
For	the	primed	valleys	of	Si,	   mxx

* = m
* 	is	the	longitudinal	effective	mass	and	

  
myy

* = mt
* 	is	

the	transverse	effective	mass.		The	valley	degeneracy	of	the	primed	valleys	is	  gv = 4 .		
Accordingly,	for	the	primed	valleys	(of	(100)	Si),	we	find	
	

   
′D2 D E( ) = gV

mxxmyy

π2 = 4
m

*mt
*

π2 ,	
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ECE	656	Homework	2	(Week	2)		(continued)	
	
which	can	be	written	as	
	

   

′D2 D E( ) = mD
*

π2

mD
* = 4 m

*mt
*

	

	
The	quantity,	  mD

* is	called	the	“density-of-states	effective	mass”	(note	that	it	includes	the	
valley	degeneracy	the	way	we	have	defined	it).	

	
	

7)	 Assume	an	ultra	thin	body	(100)	silicon	structure	with	a	thickness	of	3	nm.		Assume	no	
bandbending	within	the	structure	and	infinitely	high	energy	barriers	at	the	oxide-silicon	
interfaces.		Compute	and	plot	the	2D	density	of	states	vs.	energy.	

	
	

Solution:	
	
The	constant	energy	surfaces	for	Si	are	shown	below.		The	“confinement	mass”	is	the	
mass	in	the	direction	of	confinement	(assume	z-direction)	and	the	DOS	effective	masses	
are	determined	by	the	masses	in	the	x-y	plane.	
	
Unprimed	valleys:	
	

 
εn =
2n2π 2

2m
2tSi
2 	 	

 
D2D = gv

mt
*

π2
	 	 gv = 2 	

	
Primed	valleys:	
	

 
′εn =
2m2π 2

2mt
2tSi
2 	 	

 
′D2D = ′gv

mt
*m

*

π2
	 gv = 4 	

	
See	the	figures	below:	
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specific	numbers:		unprimed	valleys:	
	

 
εn =
2n2π 2

2m
2tSi
2 =

0.042( )
m
* m0

n2 			(eV)	

	
ε1 = 0.046 	 ε2 = 0.185 	 ε3 = 0.415 	 ε4 = 0.739 	
	

 
D2D = gv

mt
*

π2
= 0.38 m0

π2
	

 

m0

π2
= 4.2 ×1014 	(eV-cm2)-1	

	
specific	numbers	primed	valleys:	
	

 
′εm = 

2m2π 2

2mt
2tSi
2 =

0.042( )
mt
* m0

m2 			(eV)	

	
′ε1 = 0.221	 ′ε2 = 0.884 	 ′ε3 = 1.989 	 ′ε4 = 3.54 	

	
Note	that	these	are	unreasonably	large	energies	(especially	for	m	>	1)	–	due	to	
the	assumption	of	infinite	barriers	and	parabolic	energy	bands.	
	

 
D2D = gv

mt
*m

*

π2
= 1.66 m0

π2 	
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With	this	information,	we	can	plot	the	DOS	for	the	first	few	levels….	

	
	

	
	
	


