Quiz Answers: Week 2 ECE 656: Electronic Conduction In Semiconductors Mark Lundstrom Purdue University, Fall 2017

- 1) The 1D DOS is given by $D_{1D} = 2/(\pi \hbar v)$. What are the units of this expression?
 - a) Joules⁻¹.
 - b) Joules⁻².
 - c) Joules⁻¹ m⁻¹.
 - d) Joules⁻¹ m⁻².
 - e) Joules⁻² m⁻¹.

2) The 1D DOS is given by: $D_{1D} = 2/(\pi \hbar v)$. What band structure does this apply to?

- a) Parabolic.
- b) Spherical.
- c) Ellipsoidal.
- d) Linear.
- e) Any band structure.
- 3) A common way to describe a non-parabolic conduction band is $E(k)[1+\alpha E(k)] = \hbar^2 k^2 / [2m^*(0)]$. What does non-parabolicity ($\alpha > 0$) do to the density of state in k-space and energy space?
 - a) Increases DOS(k) and increases DOS(E).
 - b) Increases *DOS*(*k*) and decreases *DOS*(*E*).
 - c) Decreases DOS(k) and increases DOS(E).
 - d) Decreases *DOS*(*k*) and decreases *DOS*(*E*).
 - e) Leaves DOS(k) unchanged and increases DOS(E).

4) What is the quantity, $(1/A)\sum_{\vec{k}}\delta(E-E_k)$?

- a) The number of electrons.
- b) The density of electrons per cm².
- c) The density-of-states in k-space.
- d) The density-of-states in energy-space.
- e) Unity.

continued on next page

- 5) Very often, it suffices to know the DOS only near the bottom of the conduction band and the top of the valence band. Why?
 - a) Because the DOS at higher (or lower) energies can be obtained by extrapolation of the DOS near the band edges.
 - b) Because the Fermi function ensures that states well above E_c are always empty and that states well below E_V are always full.
 - c) Because the bands become parabolic well above E_c and well below E_V .
 - d) All of the above.
 - e) None of the above.
- 6) Which of the following is generally true of the characteristic times? (Scattering time, τ , momentum relaxation time, τ_m , and energy relaxation time, τ_E .)
 - a) $\tau > \tau_m > \tau_E$.
 - b) $\tau > \tau_m < \tau_E$.
 - c) $\tau < \tau_m > \tau_E$.
 - $\mathbf{d}) \quad \tau < \tau_{_{m}} < \tau_{_{E}} \,.$
 - e) $\tau \approx \tau_m \approx \tau_E$.
- 7) Which of the following assumptions does Fermi's Golden Rule make?
 - a) Elastic scattering and infrequent scattering.
 - b) Inelastic scattering and infrequent scattering.
 - c) Weak scattering and infrequent scattering.
 - d) Time independent scattering and weak scattering.
 - e) Time dependent scattering and weak scattering.
- 8) When we write $\vec{p}' = \vec{p} + \hbar \vec{q}$, what are \vec{p}' and \vec{q} ?
 - a) The quantity, \vec{p}' , is the final momentum of the electron and \vec{q} is a Fourier component of the scattering potential.
 - b) The quantity, \vec{p}' , is the final momentum of the electron and \vec{q} is the momentum of the scattering potential.
 - c) The quantity, \vec{p}' , is the final crystal momentum of the electron and \vec{q} is a Fourier component of the scattering potential.
 - d) The quantity, \vec{p}' , is the final energy of the electron and \vec{q} is a Fourier component of the scattering potential.
 - e) The quantity, \vec{p}' , is the final crystal momentum of the electron and \vec{q} is the initial momentum.

continued on next page

9) For isotropic scattering, how is the scattering rate related to the density-of-states? (A subscript, "i" refers to the initial state and a subscript, "f" to the final state.)

a)
$$\tau(E_i) \propto D(E_i)$$
.
b) $\tau(E_i) \propto D(E_f)$.
c) $1/\tau(E_i) \propto D(E_i)$.
d) $1/\tau(E_i) \propto D(E_f)$.
e) $1/\tau(E_i) \propto D(E_i + E_f)$.

10) If the transition rate, $S(\vec{p}, \vec{p}')$, has a term, $\delta(E' - E \mp \hbar \omega)$, which of the following is true

- $(\hbar\omega > 0)$?
- a) The scattering is isotropic and elastic.
- b) The scattering is isotropic and inelastic.
- c) The scattering is anisotropic and inelastic.
- d) The scattering is inelastic.
- e) The scattering is anisotropic.