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SOLUTIONS:		ECE	656	Homework	(Week	3)	
Mark	Lundstrom	
Purdue	University	

	
1) Let	  υ

p( )E p( )be	the	magnitude	of	the		“energy	flux”	of	a	beam	of	electrons	with	initial	
momentum,	   

p = pz ẑ .		Write	down	an	expression	for	the	energy	flux	relaxation	time.	
	

Solution:	
	
By	analogy	with	the	momentum	and	energy	relaxation	rates,	we	write:	
	

   

1
τ FE

= S p→ ′p( )
′p
∑ ΔFE

FE

= S p→ ′p( )
′p
∑ FE

p( )− FE
′p( )

FE
p( ) 		

	

  FE
p( ) = υ p( )E p( ) 	

	

   

1
τ FE

= S p→ ′p( )
′p
∑ 1− ′υ ′E

υE
cosα⎡

⎣
⎢

⎤

⎦
⎥ 		

	
where	we	have	aligned	the	z-axis	with	the	initial	flux	as	shown	below.	
	

	 	
	
	
2)	 Assume	that	we	have	two	independent	scattering	mechanisms,	“one”	and	“two”.		What	

is	the	average	time	between	collisions?		
Solution:	
	
The	total	probability	of	making	a	transition	from	  

p 	to	  
′p 	is	the	sum	of	the	probabilities	

of	doing	so	by	the	two	different	mechanisms:	
	

   STOT
p→ ′p( ) = S1

p→ ′p( ) + S2
p→ ′p( ) 	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	

The	total	scattering	rate	is:	

   

1
τTOT

= STOT
p→ ′p( )

′p
∑ = S1

p→ ′p( ) +
′p
∑ S2

p→ ′p( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1
τ1

+ 1
τ 2

	

	
So	we	add	scattering	rates,	not	scattering	times:	
	

  

1
τTOT

= 1
τ1

+ 1
τ 2

	

	
This	result	only	assumes	that	the	two	scattering	mechanisms	are	independent.	It	is	
sometimes	called	Matthiessen’s	Rule,	but	I	don’t	believe	that’s	correct.		Matthiessen’s	rule	
states	that	the	total	inverse	mobility	(or	one	over	the	total	resistivity)	is	obtained	by	adding	
the	reciprocals	of	the	individual	components.	

  

1
µTOT

= 1
µ1

+ 1
µ2

		

Resistivity	and	mobility	involve	integrating	scattering	times	over	energy,	and	this	may	not	
be	true	–	even	if	the	scattering	mechanisms	are	independent.	We	will	see	later	that	it	is	true	
only	when	the	individual	components	depend	on	energy	in	the	same	way.	
	
	
3) For	high	energy	electrons	in	semiconductors,	the	scattering	rate	may	be	on	the	order	of	

 1014 	per	sec.		Estimate	the	collisional	broadening.	 ΔE .	
	

Solution:	

   
ΔEΔt ≥ 

2
		

   
ΔE ≥ 

2Δt
= 

2τ
=

1.054×10−34 J-s( )
2× 10−14 s( ) = 0.53×10−20   J 	

  
ΔE ≥ 0.53×10−20   

1.6×10−19  eV = 0.033  eV 	

	

  ΔE ≥ 0.033  eV 	
	
4)	 In	class,	we	worked	out	the	scattering	rate	for	3D	electrons	with	a	short-range	

scattering	potential	of	   US
r( ) = Cδ 0( ) .		Repeat	the	calculations	for	2D	electrons	with	a	

short-range	scattering	potential.	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	

Solution:	

   
S p, ′p( ) = 2π


H ′p ,p

2
δ ′E − E − ΔE( ) 		elastic	scattering	so	  ΔE = 0 	

   
S p, ′p( ) = 2π


H ′p ,p

2
δ ′E − E( ) 	

	
Need	to	work	out	the	matrix	element:	

   
H ′p , p = ψ f

*

−∞

+∞

∫ US (r )ψ id
r 	

	
Neglect	Bloch	functions	and	assume	that	the	wavefunctions	are	plane	waves.	In	2D,	the	
initial	state	and	final	states	are:	
	

   �
ψ i =

1
A

ei p� ρ  	 	
   �
ψ f =

1
A

ei ′p � ρ  	

The	factor,	  1 A 	is	to	normalize	the	wave	functions	in	an	area,	A,	and	 

ρ 	is	a	vector	in	

the	x-y	plane.		The	scattering	potential	is:	
	

   US


ρ( ) = Cδ 0( ) 	

	
The	matrix	element	becomes	

   �
H ′p ,p =

1
A

e− i ′p � ρ 

−∞

+∞

∫ Cδ (0)ei p� ρ d

ρ = C

A
	,		

	
and	the	transition	rate	becomes	
	

   
S p, ′p( ) = 2π


C 2

A2 δ ′E − E( ) = 2πC 2

A
⎛
⎝⎜

⎞
⎠⎟

1
A
δ ′E − E( ) 	

	

   

1
τ p( ) = S p, ′p( )

′p
∑ = 2πC 2

A
⎛
⎝⎜

⎞
⎠⎟

1
A

δ ′E − E( )
′p
∑ = 2πC 2

A
⎛
⎝⎜

⎞
⎠⎟

D2 D E( )
2

	

so	

  

1
τ E( ) ∝ D2 D E( ) 	as	expected.	

	
Note	that	for	any	physical	problem,	we	must	have	  C 2 ∝ A ,	because	the	arbitrary	
normalization	area,	A,	must	not	appear	in	the	final	answer.	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	
5)	 Assume	a	small	scattering	potential	as	shown	below	and	assume	that	electrons	are	free	

to	move	only	in	the	z-direction.	
	

a) Work	out	an	expression	for	the	transition	rate,	  S
p→ ′p( ) ,	for	1D	electrons	using	

Fermi’s	Golden	Rule.		Be	sure	to	normalize	the	wavefunction	over	a	length,	 Lz .			
	
b) An	incident	electron	with	crystal	momentum,	  

p ,	can	only	make	a	transition	to	one	
different	state,	  

′p .		What	is	that	state?	
	
c) Explain	what	would	happen	if	the	sign	of	 ΔU 	were	to	change.	

	

	
Solution:	
	

a)	
Matrix	element:	

  
H ′p ,p =

e− i ′kzz

Lz−W /2

+W /2

∫ ΔU eikzz

Lz

dz 		

  
H ′p ,p =

ΔU
Lz

ei kz− ′kz( )z

−W /2

+W /2

∫ dz = 2ΔU
Lz

sin kz − ′kz( )W / 2
kz − ′kz( ) = ΔUW

Lz

sin x
x

⎛
⎝⎜

⎞
⎠⎟
	

	
where	
	

  x = kz − ′kz( )W / 2 	
	

   
S p, ′p( ) = 2π


H ′p ,p

2
δ ′E − E − ΔE( ) 			 (elastic	scattering	so	  ΔE = 0 )	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	

   

S

p, ′p( ) = 2π


ΔU 2 W

Lz

⎛

⎝⎜
⎞

⎠⎟

2
sin x

x
⎛
⎝⎜

⎞
⎠⎟

2

δ ′E − E( )
x = pz − ′pz( )W / 2

	

	
b)		There	are	only	two	possibilities	for	elastic	scattering	in	1D.	
	
case	i)	

 ′kz = kz ,		   x = 0 	   sin x x →1 		
	

but	in	this	case,		the	the	electron	did	not	scatter	–	it	leaves	in	the	same	state	it	came	in.	
	
case	ii)	
	

 
′kz = −kz 	

	
Then	
	

  x = kz − ′kz( )W / 2 = 2kzW / 2 = kzW 	and	the	electron	has	backscattered.	
	
The	transition	rate	is:	
	

   
S kz ,−kz( ) = 2π


ΔU 2 W

Lz

⎛

⎝⎜
⎞

⎠⎟

2
sin kzW

kzW
⎛

⎝⎜
⎞

⎠⎟

2

δ ′E − E( )
	

	
This	is	the	probability	of	back-scattering.	
	
c)			
	
Let	 ΔU →−ΔU 		
	
In	this	case,	we	would	have	a	quantum	well	instead	of	a	quantum	barrier.		There	could	
be	a	bound	state	for	electrons	in	the	well.		According	to	FGR,	there	would	be	no	
difference	in	the	scattering	rate.		This	is	a	limitation	of	FGR;	more	sophisticated	
treatments	of	scattering	would	show	that	scattering	is	stronger	when	the	potential	is	
attractive	for	the	electron.		Because	of	this,	the	mobility	of	electrons	in	n-type	material	
(attractive	interaction	between	the	electron	and	an	ionized	donor)	is	less	than	the	
minority	carrier	mobility	of	electrons	in	p-type	material	(repulsive	interaction	of	the	
electron	and	ionized	acceptor).	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	
Note:		This	is	a	problem	that	we	could	solve	exactly	without	Fermi’s	Golden	Rule,	which	
assumes	that	 ΔU 	is	small.		Just	match	the	wavefunction	and	its	derivative	at	  x = −W / 2 	
and	  x = +W / 2 .	

	
	
6) For	unscreened	Coulomb	scattering,	the	transition	rate,	  S

p→ ′p( ) ,	goes	to	infinity	for	
small	scattering	angles.		Explain	why	this	occurs	physically.		Also	explain	in	words	how	
Conwell	and	Weisskopf	avoid	the	singularity	when	integrating	the	transition	rate.	

	
Solution:	
As	shown	below,	the	further	the	electron	is	from	the	charged	impurity,	the	less	it	is	
deflected.		The	unscreened	Coulomb	potential,	  US (r) = q2 4πκ Sε0r( ) ,	is	felt	to	infinite	
distances,	so	there	is	an	infinite	probability	of	being	deflected	(scattered)	at	an	
infinitesimally	small	angle.	
	
Conwell	and	Weisskopf	argued	that	once	an	electron	is	more	than	half	the	average	
distance	between	impurities	away	from	the	impurity	in	question,	then	it	is	closer	to	
another	impurity,	so	there	is	a	minimum	angle	of	deflection.		We	never	let	the	angle	go	
to	zero,	so	the	infinity	does	not	occur.	
	

	
	

	
7) Answer	the	following	questions	about	Conwell-Weisskopf	scattering.	
	

a) Show	that	the	Conwell-Weisskopf	scattering	rate	is	
	

  

1
τ E − EC( ) = N Iπbmax

2
2m* E − EC( )

m* 		

	
You	may	assume	that	  EC = 0 	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	

b) Provide	a	simple,	physical	explanation	for	the	Conwell-Weisskopf	scattering	rate	
in	terms	of	the	cross-section	for	scattering,	  πbmax

2 .	
	

c)	 Evaluate	and	plot	the	scattering	rate	for	electrons	in	GaAs	with	the	thermal	
average	energy.		Compare	the	scattering	rate	with	the	momentum	relaxation	
rate.		You	should	plot	 τ m τ 	vs.	 N I 	for	  1014 < N I <1018 cm-3 .		Explain	in	physical	
terms	why	 τ m 	and	τ 	differ,	and	explain	why	the	ratio,	 τ m τ 	decreases	with	 N I .	

	
Solution:	
	
a)			
This	takes	a	little	math…	
	
Equation	(2.36)	of	Fundamentals	of	Carrier	Transport	(FCT)	gives:	

   

1
τ
= 2π


N Iq
4

κ S
2ε0

2

1
Ω

δ E − ′E( )
16 p ( )4

sin2 α 2( )p,↑
∑ 		

	

 
sin2 α 2( ) = 1

2
1− cosα( ) = 1

2
1− cosθ( ) θ =α( ) 	

	
Note	that	α 	is	the	polar	angle	between	the	incident	momentum	and	the	scattered	
momentum	and	θ 	is	the	polar	angle	in	our	3D	coordinate	system.		We	have	simply	
chosen	our	z-axis	to	lie	along	the	direction	of	the	incident	momentum,	so	that	α = θ .	
	
We	now	convert	the	summation	to	an	integral	(remember	not	to	include	the	factor	of	2	
for	spin!)	and	find	the	scattering	rate	as	
	

   

1
τ
= 2π


N Iq
4

κ S
2ε0

2

1
Ω

Ω
8π3 dφ

0

2π

∫
d cosθ( )
1− cosθ( )2

−1

cosθmin

∫
4

16× 1
4

p4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

δ E − ′E( ) ′p 2 d ′p
0

∞

∫ 	

	

  

1
τ
=

N Iq
4

8πκ S
2ε0

2 p4 I1 × I2 	 	 	 	 	 	 	 	 	 (*)	

	
Let	  x = 1− cosθ( ) 	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	

	

  

I1 =
d cosθ( )
1− cosθ( )2

−1

cosθmin

∫ = −dx
x2

2

1−cosθmin

∫ = 1
1− cosθmin

− 1
2
= 1

2
1

sin2 θmin 2( ) −1
⎛

⎝
⎜

⎞

⎠
⎟ 	

	

  
I1 = γ CW

2 2 	 	 	 	 	 	 	 	 	 	 (**)	

	
This	is	eqn.	(2.43)	of	FCT.	
	
	

  
I2 = δ E − ′E( ) ′p 2 d ′p

0

∞

∫ 	

	

Change	variables:		
  

′p 2

2m* = ′E 	
  ′p 2d ′p = 2 m*( )3/2

′E 	

	
Integral	2	becomes	
	

  
I2 = δ E − ′E( ) ′p 2 d ′p

0

∞

∫ = 2 m*( )3/2
E 	 	 	 	 	 	 	 (***)	

	
Now	use	(**)	and	(***)	in	(*)	to	find	
	

  

1
τ
=

N Iq
4

8πκ S
2ε0

2 p4

γ CW
2

2
2 m*( )3/2

E 	

	
Finally,	use	eqn.	(2.44)	in	FCT	for	  γ CW

2 2 	to	find:	
	

  
1
τ
= N I πbmax( )2

2E m* 	

	
or	
	
	

  

1
τ
= N I πbmax( )2

υ 	
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ECE	656	Homework	2	(Week	3)	Solutions		(continued)	
	

b)			
	
Here,	we	must	recall	the	concept	of	“scattering	cross	section.”		As	shown	in	the	figure	
below,	we	think	of	each	scatterer	as	having	an	area,	σ 	cm2.		
	

	 	
A	beam	of	electrons	is	incident	on	a	slab	of	material	with	thickness,	 dx .		If	 N I 	is	the	
density	of	scattering	centers	(impurities)	in	the	slab	(per	cm3),	then	the	number	of	
scatterers	in	the	slab	is:	
	

 num = N I Adx 		
	
The	fraction	of	the	cross-sectional	area	obscured	by	the	scatterers	is:	
	

 
f =

σ N I Adx
A

=σ N I dx 	

	
The	probability	of	scattering	in	a	time,	 dt ,	is	the	scattering	rate,	 1 τ ,	times		 dt 	and	is	
equal	to	the	fraction	of	the	cross-sectional	area,	 A ,	obscured	by	the	scatterers.	
	

  

1
τ

dt = N Iσ dx 	

	
or		
	

  

1
τ
= N Iσ

dx
dt

= N Iσυx 	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	

	
So	the	scattering	rate	is	proportional	to	the	density	of	scattering	centers,	to	the	cross-
sectional	area	of	each	scattering	center,	and	to	the	velocity	of	electrons	(the	faster	they	
go,	the	more	scatterers	then	encounter).	
	
Comparing	to	the	answer	in	part	a),	we	see	that		
	

  

1
τ
= N Iσυ σ = πbmax

2 	

	
c)			
	
Use	eqn.	(2.46)	in	FCT	for	the	momentum	relaxation	time	and	the	result	it	part	a)	for	
the	scattering	time	to	write:	
	

  

τ m

τ
=

4πκ Sε0 E
q2

⎛

⎝⎜
⎞

⎠⎟

2

bmax
2 1

ln 1+ γ CW
2( ) 	

	
Assume	room	temperature,	thermal	average	electrons	with	  E = 3kBT 2 ,	and	compute	
the	numbers.	
	
	
NI	 	 	 Bmax	 	 	  γ CW 	 	 	  τ m τ 	
(cm-3)	 	 (nm)	
	
	
 1014 	 	 	 110	 	 	 75	 	 	 326	
 1015 	 	 	 50	 	 	 35	 	 	 85	
 1016 	 	 	 23	 	 	 16	 	 	 24	
 1017 	 	 	 11	 	 	 7.5	 	 	 7	
 1018 	 	 	 5	 	 	 3.5	 	 	 2.4	
	
	
We	find	that	 τ m > τ 	because	II	scattering	favors	deflections	by	a	small	angle.	
	
As	the	density	of	impurities	increases,	 τ m →τ .		This	occurs	because	  bmax 	decreases,	
which	increases	 θmin ,	so	there	are	fewer	and	fewer	of	the	small	angle	deflections,	which	
increase	the	momentum	relaxation	time.	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	
8) Compute	and	compare	the	momentum	relaxation	times	due	to	ionized	impurity	

scattering	under	the	following	two	circumstances.		(Assume	GaAs	at	TL	=	300	K	and	
doped	at	  N D = 1018 cm-3 .)	

	
a) Find	  1 τ m 	for	electrons	the	thermal	average	energy,	  3kBTL 2 .	

	
b) Find	  1 τ m 	for	electrons	the	  E = 0.3 	eV.		Such	electrons	can	be	produced	by	the	

heterojunction	launching	ramp	shown	in	Fig.	3.2	of	Fundamentals	of	Carrier	
Transport.	

	
Solution:	
	
a)		  E = 3kBT 2 = 0.039 eV 		
	
Let’s	first	compute	the	Debye	length:	
	

  
LD =

κ Sε0kBT
q2n0

n0 = 1018cm-3 → LD = 4.3  nm 		

	
now	compute	bmax:	

	

  
bmax =

1
2

N I
−1/3 = 0.5×10−6   cm = 5  nm 	

	
The	two	are	so	close,	that	it	is	not	really	clear	whether	to	use	Conwell-Weisskopf	or	
Brooks-Herring.		We’ll	use	Brooks-Herring	and	compare	to	Conwell-Weisskopf.		From	
(2.39)	in	FCT:	
	

   γ
2 = 8m*ELD

2 2 = 5.0 		
	

 
ln 1+ γ 2( )− γ 2

1+ γ 2

⎡

⎣
⎢

⎤

⎦
⎥

−1

= 1.0 		

	
From	(2.40)	FCT,	we	find:	
	

  
τ m =

16 2m*πκ S
2ε0

2

N Iq
4 ln 1+ γ 2( )− γ 2

1+ γ 2

⎡

⎣
⎢

⎤

⎦
⎥

−1

E3/2 = 0.2 ps 	(The	C-W	approach	gives	0.1	ps)	
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ECE	656	Homework	(Week	3)	Solutions		(continued)	
	

b)		  E = 0.30 eV 		
	

   γ
2 = 8m*ELD

2 2 = 39 	
 

ln 1+ γ 2( )− γ 2

1+ γ 2

⎡

⎣
⎢

⎤

⎦
⎥

−1

= 0.4 	

	

  
τ m =

16 2m*πκ S
2ε0

2

N Iq
4 ln 1+ γ 2( )− γ 2

1+ γ 2

⎡

⎣
⎢

⎤

⎦
⎥

−1

E3/2 = 1.5 ps 	(CW	approach	gives	0.5	ps)	

	
High-energy	carriers	are	deflected	less	by	ionized	impurities	than	low	energy	
carriers.		Depending	on	whether	we	use	the	BH	or	CW	approach,	the	increase	in	
momentum	relaxation	time	for	high	energies	is	a	factor	of	5	or	7.5.	

	
	
	


