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SOLUTIONS:		ECE	656	Homework	(Week	4)	
Mark	Lundstrom	
Purdue	University	

	
	
1)	 Repeat	the	electron-phonon	energy-momentum	conservation	arguments	discussed	in	

Sec.	2.5	of	Fundamentals	of	Carrier	Transport,	but	this	time	assume	electrons	in	
graphene.	

	
Solution:	
Begin	with	energy	and	momentum	conservation:	
	
  ′E = E ± ω 		 	 	 	 	 	 	 	 	 	 (*)	
  
!′p = !p ± "!q 	 	 	 	 	 	 	 	 	 	 (**)	
	
Use	the	dispersion	of	graphene	to	write:	
	

  E = υF k =υF p 		

  E
2 = υF p( )2

	

  
E = p2

E υF
2( ) =

p2

m* E( ) 	 	 	
  
m* E( ) ≡ E υF

2( ) 	
	
Using	this	definition	of	an	effective	mass	for	graphene,	(*)	becomes	

   
′p 2

m* = p2

m* ± ω 	 	 	 	 	 	 	 	 	 	 (*’)	

	
which	is	similar	to	the	parabolic	band	result.	

	
Now	take	the	dot	product	of	(**)	with	itself	to	find:	

   
!′p i
!′p = ′p 2 = p2 ± 2"!p i

!q + "2q2 	
	
now	divide	through	by	  m* 	
	

   
′p 2

m* = p2

m* ±
2!"p i

"q
m* + !

2q2

m* 	

	
and	use	(*’)	

	

   
±!ω = ± 2!"p i

"q
m* + !

2q2

m* = ± 2!pqcosθ
m* + !

2q2

m* 	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	
Solving	for	   !

2q2 m* 	we	find	
	

   
!2q2

m* = ∓ 2!pqcosθ
m* ± !ω 	

	

   
!β = 2 p ∓cosθ ± m*ω

2 pq
⎡

⎣
⎢

⎤

⎦
⎥ ,	

	
which	is	a	statement	of	energy	and	momentum	conservation	for	electrons	in	graphene.	
	
Now	use	the	dispersion	of	graphene	and	our	definition	of	effective	mass	to	write	
	

  

m*

p
=

E υF
2

E υF

= 1
υF

		

	
which	can	be	used	to	express	our	relation	for	energy-momentum	conservation	as	
	

   
!q =2 p ∓cosθ ± ω

2qυF

⎡

⎣
⎢

⎤

⎦
⎥ 	

	
Note	that	this	result	is	almost	the	same	as	for	the	parabolic	band	result	(except	for	the	
factor	of	2	downstairs).		The	conclusions	will	be	similar.	
	
	
2) Assume	a	transition	rate	of	the	form:	
	

  S
!p→ !′p( ) = Cδ E − ′E( )δ !′p − !p ∓ #!q( ) 	

	
where	C	is	a	constant.		Answer	the	following	questions	assuming	parabolic	energy	
bands.	

	
a) Derive	an	expression	for	  

!q = q ,	which	expresses	conservation	of	energy	and	
momentum.	

b) Using	the	results	of	a),	determine	the	minimum	and	maximum	magnitude	of	  
!q .	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	

Solution:	
	
a)	
Begin	with	energy	and	momentum	conservation:	

 ′E = E 		 	 	 	 	 	 	 	 	 	 (*)	
  
!′p = !p ± "!q 	 	 	 	 	 	 	 	 	 	 (**)	
	
Since	the	band	are	parabolic,	(*)	can	be	written	as:	

   
′p 2

2m* =
p2

2m* ± ω 	 	 	 	 	 	 	 	 	 (*’)	

	
Now	take	the	dot	product	of	(**)	with	itself	to	find:	

   
!′p i
!′p = ′p 2 = p2 ± 2"!p i

!q + "2q2 	
	
now	divide	through	by	  2m* 	

   
′p 2

2m* =
p2

2m* ±
2!"p i

"q
2m* + !

2q2

2m* 	

	
and	use	(*’)	

   
′p 2

2m* −
p2

2m* = 0 = ± 2!"p i
"q

2m* + !
2q2

2m* = ± 2!pqcosθ
2m* + !

2q2

2m* 	

	
Solving	for	  !q 	we	find	

   
!q = ∓2 pcosθ ,		
which	is	a	statement	of	energy	and	momentum	conservation	on	for	elastic	scattering.	
	
b)			
	
Note	that	 q 	is	the	magnitude	of	  

!q ,	so	it	must	always	be	greater	than	or	equal	to	zero.	
The	largest	 q 	will	occur	for		

Absorption:		 cosθ = −1, θ = π 	
Emission:						 cosθ = 1, θ = 0 	

	
In	either	case,	   !qmax = 2 p 	
The	smallest	 q occurs	for	 θ = π 2 	for	both	absorption	and	emission.	
In	either	case,	   !qmin = 0 	
We	conclude	that	for	elastic	scattering:	

   
0 ≤ !q ≤ 2 p 	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	
3) This	problem	concerns	electron	scattering	in	bulk	(3D)	GaAs.		Assume	that	the	optical	

phonon	energy	is	  ω0 = 35 	meV.		Recall	that	GaAs	is	a	direct	gap	semiconductor	and	
that	the	L	valleys	(along	<111>)	have	energy	minima	that	are	0.3	eV	above	the	Γ 	valley	
minimum.		The	four	X	valleys	(along	<100>)	have	energy	minima	0.5	eV	above	the	Γ 	
valley	minimum.		Recall	that	Γ 	valley	electrons	have	a	light	effective	mass	and	that	the	
L	and	X	valley	electrons	have	a	large	(Si-like)	effective	mass.		Answer	the	following	
questions.	

	
Solution:		

	
a) Sketch	the	total	electron	scattering	rate	vs.	energy	for	electrons	in	the	Γ 	valley.		

Label	all	critical	energies	and	give	a	brief	explanation	(label	absorption	and	
emission	processes	separately).		All	energies	should	be	referred	to	the	bottom	of	the	
Γ 	valley,	i..e.	  ECΓ = 0 .	

	

	 	
	

	
The	scattering	rate	is	the	sum	of	6	different	processes;	the	last	five	of	these	have	
thresholds	for	their	onset.	
	

1) POP	Absorption	(ABS).		Γ − Γ intravalley	scattering.	
2) POP	Emission	(EMS).		Γ − Γ intravalley	scattering	plus	1)	
3) OP	ABS.	 Γ − L intervalley	scattering	plus	1)	and	2).	
4) OP	EMS.	 Γ − L intervalley	scattering	plus	1),	2),	and	3).	
5) OP	ABS.	 Γ − X intervalley	scattering	plus	1),	2),	3),	and	4).	
6) OP	EMS.	 Γ − X intervalley	scattering	plus	1),	2),	3),	4),	and	5).	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	

b) Sketch	the	Γ 	to	Γ 	electron	scattering	rate	vs.	energy.		Label	all	critical	energies	and	
give	a	brief	explanation	(label	absorption	and	emission	processes	separately).	

	

	 	 	
	

1) POP	Absorption	(ABS).		Γ − Γ intravalley	scattering.	
2) POP	Emission	(EMS).		Γ − Γ intravalley	scattering		

	
Note	that	POP	ABS	is	proportional	to	  N0 	and	POP	EMS	is	proportional	to	  N0 +1 ,	so	POP	
EMS	is	larger	in	magnitude.	

	
c) Sketch	the	Γ 	to	L	electron	scattering	rate	vs.	energy.		Label	all	critical	energies	and	

give	a	brief	explanation	(label	absorption	and	emission	processes	separately).	
	

	 	 	
	

3) OP	ABS.	 Γ − L intervalley	scattering.	
4) OP	EMS.	 Γ − L intervalley	scattering	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	

Note	that	EMS	is,	again,	stronger	than	ABS.		Also	note	that	the	scattering	rates	increase	
as	the	square	root	of	energy	because	they	goes	as	the	density	of	final	states	(no	POP	
intervalley	scattering	because	large	phonon	wavevectors	are	needed	for	this	type	of	
scattering).	

	
d) Sketch	of	the	L	to	Γ 	electron	scattering	rate	vs.	energy.		Label	all	critical	energies	

and	give	a	brief	explanation	(label	absorption	and	emission	processes	separately).	
	

	 	 	
	

1) OP	ABS.	 L − Γ intervalley	scattering.	
2) OP	EMS.	 L − Γ intervalley	scattering	

	
Note	that	both	ABS	and	EMS	begin	at	the	same	energy	because	electrons	at	the	
bottom	of	the	L-valley	can	scatter	down	to	the	Γ 	valley	by	either	absorbing	or	
emitting	a	phonon.		Also	note	that	the	magnitude	of	the	scattering	rates	is	smaller	
than	in	c)	because	the	final	states	in	this	case	have	a	valley	degeneracy	of	1	instead	
of	4	as	in	c).		Most	importantly,	note	that	the	scattering	rates	do	not	begin	at	zero,	
because	they	are	proportional	to	a	DOS	in	the	final	valley,	where	the	Γ 	valley	DOS	is	
quite	high.		   1 τΓ−L ∝ DΓ E ± ω0( ) 	begins	at	an	energy	   E = 0.3± ω0 ,	where	the	
density-of-final	states	(in	the	Γ 	valley)	is	quite	high.	

	
e) Sketch	the	L	to	L	electron	scattering	rate	vs.	energy.		Label	all	critical	energies	and	

give	a	brief	explanation	(label	absorption	and	emission	processes	separately).	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	

	 	
An	electron	at	the	bottom	of	an	L-valley	can	absorb	a	phonon	and	scatter	to	another	L-
valley,	but	an	electron	near	the	bottom	of	an	L-valley	cannot	scatter	to	another	L-valley	
by	emission,	because	there	are	no	L-valley	states	available	at	that	energy.	

	
	
4)	 The	deformation	potential	scattering	rate	for	optical	phonon	emission	(ODP	emission)	

is	described	by:	
	

   

1
τ
= 2π

D0

2

2ρω0

⎛

⎝⎜
⎞

⎠⎟
N0 +1( ) D3D E − ω0( )

2 	.	

	
Obtain	the	energy	flux	relaxation	rate	for	this	scattering	process.	

	
Solution:	

	
Begin	with	the	definition	of	the	energy	flux	relaxation	rate:	

	

   

1
τ FW

= S p,  ′p( )
 ′p ,↑
∑

FW
p( )− FW

 ′p( )
FW
p( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
		 	 	 	 	 	 	 (*)	

	
Work	on	the	term	in	brackets	and	assume	that	the	initial	flux	is	oriented	along	the	z-
axis:	
	

   

FW
p( )− FW

′p( )
FW
p( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

Eυz − E − ω0( ) ′υz

Eυz

= 1−
E − ω0( )

E
′υz

υz

⎛

⎝⎜
⎞

⎠⎟
= 1−

′υz

υz

⎛

⎝⎜
⎞

⎠⎟
+
ω0

E
′υz

υz

⎛

⎝⎜
⎞

⎠⎟
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	
	

   

FW
p( )− FW

′p( )
FW
p( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1−

′υz

υz

⎛

⎝⎜
⎞

⎠⎟
+
ω0

E
′υz

υz

⎛

⎝⎜
⎞

⎠⎟
= 1−

′υz

υz

⎛

⎝⎜
⎞

⎠⎟
−
ω0

E
1−

′υz

υz

⎛

⎝⎜
⎞

⎠⎟
+
ω0

E
	

	
If	we	assume	that	the	effective	mass	is	constant	(parabolic	energy	bands),	then	

  m
*υz = pz 	and	we	find:	

	

   

FW
p( )− FW

′p( )
FW
p( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1−

′pz

pz

⎛

⎝⎜
⎞

⎠⎟
+
ω0

E
−
ω0

E
1−

′pz

pz

⎛

⎝⎜
⎞

⎠⎟
	

	
Now	insert	this	expression	in	(*)	
	

   

1
τ FW

= S p, ′p( )
′p ,↑
∑ 1−

′pz

pz

⎛

⎝⎜
⎞

⎠⎟
+
ω0

E
−
ω0

E
1−

′pz

pz

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= S p, ′p( ) 1−
′pz

pz

⎛

⎝⎜
⎞

⎠⎟
+ S p, ′p( ) ω0

E
⎛
⎝⎜

⎞
⎠⎟′p ,↑

∑
′p ,↑
∑ − S p, ′p( )

′p ,↑
∑ ω0

E
1−

′pz

pz

⎛

⎝⎜
⎞

⎠⎟

	

	

   

1
τ FW

= 1
τ m

+
ω0

E
⎛
⎝⎜

⎞
⎠⎟

1
τ
−
ω0

E
⎛
⎝⎜

⎞
⎠⎟

1
τ m

	

	

   

1
τ FW

= 1
τ m

1−
ω0

E
⎛
⎝⎜

⎞
⎠⎟
+
ω0

E
⎛
⎝⎜

⎞
⎠⎟

1
τ
	

	
Since	we	are	assuming	that	phonon	emission	occurs,	this	only	applies	for	   E > ω0 .	

	
	
5) The	ODP	scattering	rate	for	2D	electrons	is:	
	

   

1
τ n, ′n

⎞

⎠
⎟

a,e

= π

D0

2

ρω0

⎛

⎝⎜
⎞

⎠⎟
N0 +

1
2


1
2

⎛
⎝⎜

⎞
⎠⎟

D2 D E ± ω0( )
2

2 +δn, ′n

2
⎛

⎝
⎜

⎞

⎠
⎟ 	

	
Let	   ω0 = 1.1kBT ,	assume	two	subbands,	and	plot	the	absorption	and	emission	
scattering	rates	vs.	energy	for	an	electron	in	subband	one.	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	
Solution:	
	
Let’s	write	the	scattering	rate	as	

	

   

1
τ n, ′n

⎞

⎠
⎟

a,e

= Γ0 N0 +
1
2


1
2

⎛
⎝⎜

⎞
⎠⎟

2 +δn, ′n

2
⎛

⎝
⎜

⎞

⎠
⎟
	

where	

   
Γ0 =

π

D0

2

ρω0

⎛

⎝⎜
⎞

⎠⎟
m*

2π2 	

   
N0 =

1
eω0 kBT −1

= 1
e1.1 −1

= 1
3−1

= 1
2
	

	
Now	work	out	the	various	scattering	rates:	

	

   

1
τ n, ′n

⎞

⎠
⎟

a,e

= Γ0

1
2
+ 1

2


1
2

⎛
⎝⎜

⎞
⎠⎟

2 +δn, ′n

2
⎛

⎝
⎜

⎞

⎠
⎟ = Γ0 1 1

2
⎛
⎝⎜

⎞
⎠⎟

2 +δn, ′n

2
⎛

⎝
⎜

⎞

⎠
⎟ 	

	

  

1
τ1,1

⎞

⎠
⎟

a

= Γ0

1
2

⎛
⎝⎜

⎞
⎠⎟

3
2

⎛
⎝⎜

⎞
⎠⎟
= 3

4
Γ0 	

	

  

1
τ1,1

⎞

⎠
⎟

e

= Γ0

3
2

⎛
⎝⎜

⎞
⎠⎟

3
2

⎛
⎝⎜

⎞
⎠⎟
= 9

4
Γ0 	

	

  

1
τ1,2

⎞

⎠
⎟

a

= Γ0

1
2

⎛
⎝⎜

⎞
⎠⎟

1( ) = 2
4
Γ0 	

	

  

1
τ1,2

⎞

⎠
⎟

e

= Γ0

3
2

⎛
⎝⎜

⎞
⎠⎟

1( ) = 6
4
Γ0

	
	
Total	scattering	rate	for	  E > ε2 	

  

1
τ1

⎞

⎠⎟ tot

= Γ0

3
4
+ 9

4
+ 2

4
+ 6

4
⎛
⎝⎜

⎞
⎠⎟
= 5Γ0
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ECE	656	Homework	(Week	4)	Solutions		(continued)	

	
The	total	scattering	rate	for	electrons	in	subband	1	is	plotted	below.		In	this	plot,	we	
take	the	zero	of	energy	to	be	the	bottom	of	the	first	subband,	  E = ε1 = 0 .	

	
	

6) Use	arguments	similar	to	those	in	Sec.	2.2	of	FCT	and	evaluate	the	momentum	
relaxation	time	for	piezoelectric	scattering.	

	
a) Show	that	the	scattering	potential	is	

  
U PZ =

eePZ

κ Sε0

u 		 	 (2.29)	of	FCT	

where	 ePZ 	is	the	piezoelectric	constant	and	 u 	is	the	elastic	wave	displacement.	We	
have	replaced	the	charge	on	a	electron,	q,	with	e	to	avoid	confusion	with	the	phonon	
wave	vector,	  

!q .	
	

HINT:	Begin	with	
   
D =κ Sε0E + ePZ

∂u
∂x
	

	
b) Use	the	scattering	potential	of	part	a)	and	evaluate	the	matrix	element	for	PZ	

scattering.		Show	that	the	result	is	
	

   
H !′p , !p

2
=

eePZ

κ Sε0

⎛

⎝⎜
⎞

⎠⎟

2
kBT

2cℓq
2Ω

δ !′p − !p ∓ $!q( ) = Kq

2
Aq

2
δ !′p − !p ∓ $!q( ) 	

	
c) Write	an	expression	for	the	transition	rate,	   S

p, ′p( ) ,	and	determine	 Cq .			

d) Evaluate	  1 τ m 	assuming	that	the	scattering	is	elastic.	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	

Solution:	
	

a)		Begin	with		
   
D =κ Sε0E + ePZ

∂u
∂x
			 	 	 	 	 	 	(*)	

	

Assume	space	charge	neutrality:	
    
∇iD =κ Sε0E + ePZ

∂u
∂x

= 0
	

If,	 D ∝ eiqx ,	this	implies	that	D	=	0,	so	we	find	the	electric	field	as:	

   
E = −

ePZ

κ Sε0

∂u
∂x

= −iq
ePZ

κ Sε0

u
	

	
The	scattering	potential	is	
	

   
US = −e E dx∫ = e

ePZ

κ Sε0

u
	

	

  
U PZ = e

ePZ

κ Sε0

u
	

	
b)		Evaluate	the	matrix	element		
	

   
H  ′p , p =

e−i ′p i
r 

Ω∫ US

ei ′p i
r 

Ω
d 3r 	

	
Use	the	results	from	part	a)	
	

   
U PZ =

eePZ

κ Sε0

u = Kq Aqe
i!qi
!r

	
	

  
Kq =

eePZ

κ Sε0 		
	(eqn.	2.59d	of	FCT)	

	

   
H !′p , !p = Kq Aq

1
Ω

ei !p− !′p ±"!qi
!r( ) "∫ d 3r 	

	
Following	the	text,	FCT,	we	find	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	

   
H !′p , !p

2
= Kq

2
Aq

2
δ !p − !′p ∓ #!q( ) 	eqn.	(2.60	of	FCT)	 	 	 	 (**)	

	
Now	quantize	the	lattice	vibrations	according	to	eqn.	(2.71c)	
	

   
Aq

2
→ !

2ρΩω q

Nω + 1
2
∓

1
2

⎛
⎝⎜

⎞
⎠⎟
	

	
and	we	finally	write	the	matrix	element	(**)	as	
	

   

H !′p , !p

2
= Kq

2
Aq

2
δ !p − !′p ∓ #!q( ) = eePZ

κ Sε0

⎛

⎝⎜
⎞

⎠⎟

2
#

2ρΩω q

Nω + 1
2
∓

1
2

⎛
⎝⎜

⎞
⎠⎟
δδ !p − !′p ∓ #!q( ) (***)	

	
c)		Begin	with	the	transition	rate	
	

   
S !p, !′p( ) = 2π

"
H !′p , !p

2
δ !p − !′p ∓ "!q( )δ ′E − E ∓ "ω( ) 	

	
Now	use	(***)	for	the	matrix	element	and	eqn.	(2.66)	FCT	for	the	two	delta	functions	
to	find	
	

   
S !p, !′p( ) = Cq Nω + 1

2
∓

1
2

⎛
⎝⎜

⎞
⎠⎟
δ ′E − E ∓ #ω( ) 	

	
where	

   
Cq =

2π
!2

eePZ

κ Sε0

⎛

⎝⎜
⎞

⎠⎟

2
!

2ρΩω
1
!υq

= 2π
!2

eePZ

κ Sε0

⎛

⎝⎜
⎞

⎠⎟

2
!

2ρΩω
m*

!pq
× q

q
	

	

   
Cq =

eePZ

κ Sε0

⎛

⎝⎜
⎞

⎠⎟

2
πm*

!ρυSq2 pΩ
	 (eqn.	(2.73d)	of	FCT	

	
Here,	we	have	used:	 ω q =υS 	and	  p = m*υ for	the	momentum	of	the	electron.	
	
	
	
	
	
	



Mark	Lundstrom	 	 	

ECE-656	 	 Fall	2017	13	

ECE	656	Homework	(Week	4)	Solutions		(continued)	
	
d)	Begin	with	eqn.	(2.80)	in	FCT.		Assume	

	

  

ω
υq

=
υS

υ
<<1 	(average	electron	velocity	much	less	than	the	phonon	velocity,	so	

(2.80)	becomes	
	

   

1
τ m

= Ω
4π 2 Nω + 1

2
∓

1
2

⎛
⎝⎜

⎞
⎠⎟qmin

qmax

∫ Cq

"q
2 p
"q3

p
dq 	

	
Now	assume	equipartition:	

   
N ≈ N +1=

kBT
ω

	

   

1
τ m

=
πm*e2ePZ

2 kBT
cℓκ Sε0 2 p3( ) q dq

qmin

qmax

∫ 	

	
Acoustic	phonon	scattering	is	elastic:	  qmax = 2 p 	and	  qmin = 0 	

  
q dq

qmin

qmax

∫ =
qmax

2

2
−

qmin
2

2
= 2 p2 	

	
Finally,	the	scattering	rate	becomes:	
	

   

1
τ m

=
πm*e2ePZ

2 kBT
cℓκ Sε0 p

∝ 1
E
	

	
The	momentum	relaxation	rate	decreases	with	energy	–	as	expected	for	an	
electrostatic	scattering	mechanisms.	

	
	
7) For	alloys	of	compound	semiconductors	like	 AlxGa1-xAs ,	microscopic	fluctuations	in	the	

alloy	composition,	x,	produce	perturbations	in	the	band	edges.		The	transition	rate	for	
allow	scattering	is	

	

   
S p, ′p( ) = 2π

2

3π 2

16
⎛
⎝⎜

⎞
⎠⎟
ΔU

2

NΩ
δ ′E − E( ) 	

	
where	N	is	the	concentration	of	atoms	and	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	

  ΔU = x 1− x( ) χGaAs − χAlAs( ) 	
with	 χ 	being	the	electron	affinity.	
	
a) Explain	why	the	alloy	scattering	rate	vanishes	at	x	=	0	and	at	x	=	1.	

	
b) Derive	an	expression	for	 τ m 	for	alloy	scattering.	

	
	
Solution:	
	
a)	For	x	=	0,	we	have	GaAs,	which	is	not	an	alloy,	so	there	is	no	alloy	scattering.		For	x	=	
1,	we	have	AlAs,	which	us	not	an	alloy,	so	there	is	no	alloy	scattering.		The	strongest	
allow	scattering	will	occur	when	x	=	½.	
	
b)	
	

   
S p,  ′p( ) = C

Ω
δ ′E − E( )

	
where	

   
C = 2π
2

3π 2

16
⎛

⎝⎜
⎞

⎠⎟
ΔU

2

N
	

	
Since	there	is	no	dependence	on	phonon	wavevector,	the	scattering	rate	and	
momentum	relaxation	rates	should	be	equal.		Since	there	is	no	dependent	on	β ,	we	do	
not	need	to	worry	about	energy-momentum	conservation	and	can	do	the	sum	simply.	
	

   

1
τ
= 1
τm

= S p,  ′p( )
 ′p ,↑
∑ = C 1

Ω
δ ′E − E( )

 ′p ,↑
∑ 	

	
We	recognize	the	sum	as	one-half	of	the	density-of-states,	
	

  

1
τ E( ) =

1
τm E( ) = C

D3D E( )
2 	

	

  
τm E( )∝ E−1/2

		
Which	is	power	law	scattering	with	a	characteristic	exponent	of	  s = −1/ 2 .	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	

8) Acoustic	phonon	scattering	was	assumed	to	be	elastic	when	working	out	the	
momentum	relaxation	rate	in	eqn.	(2.84)	of	FCT.		Repeat	the	calculation	but	do	not	
assume	elastic	scattering.		Show	that	the	result	is	nearly	equal	to	eqn.	(2.84)	near	room	
temperature.	

	
Solution:	
	
The	transition	rate	for	phonon	scattering	is:	
	

   
S !p, !′p( ) = 2π

"
Kq

2
Aq

2
δ !p − !′p ∓ "!q( )δ ′E − E ∓ "ω( )

	
	
The	two	delta-functions	can	be	replaced	by	one	that	expresses	energy	and	
momentum	conservation	(eqn.	(2.66)	of	FCT):	
	

   
δ !p − !′p ∓ #!q( )δ ′E − E ∓ #ω( )→ 1

#υq
δ ±cosθ + #q

2 p
∓
ω q

υq
⎛

⎝
⎜

⎞

⎠
⎟
	

so	the	transition	rate	becomes:	
	

   
S !p, !′p( ) = 2π

"2υq
Kq

2
Aq

2
δ ±cosθ + "q

2 p
∓
ω q

υq
⎛

⎝
⎜

⎞

⎠
⎟
,	

	
which	is	eqn.	(2.67)	of	FCT.		For	ADP	scattering:	
	

  
Kq

2
= q2DA

2 	 (eqn.	(2.59a)	of	FCT)	

	

   
Aq

2
→ !

2ρΩω q

Nωq
+ 1

2
∓

1
2

⎛
⎝⎜

⎞
⎠⎟
	 	 	 	 (eqn.		(2.71c)	of	FCT)	

	
So	we	find:	
	

   
S !p, !′p( ) = πm*DA

2

"ρ pυS

1
Ω

Nωq
+ 1

2
∓

1
2

⎛
⎝⎜

⎞
⎠⎟
δ ±cosθ + "q

2 p
∓
ω q

υq
⎛

⎝
⎜

⎞

⎠
⎟ 	

	
or	
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ECE	656	Homework	(Week	4)	Solutions		(continued)	
	

   
S !p,

!′p( ) = Cq Nωq
+ 1

2
∓

1
2

⎛
⎝⎜

⎞
⎠⎟
δ ±cosθ + #q

2 p
∓
ω q

υq
⎛

⎝
⎜

⎞

⎠
⎟ 	 	 (eqn.	(2.72	FCT)	

	

   
Cq =

πm*DA
2

!ρ pυS

1
Ω
	 	 (eqn.	(2.73a)	FCT)	

	
Following	FCT,	we	write	the	momentum	relaxation	rate	as:	
	

   

1
τ m

= S
!
p,
!′p( )

!q ,↑
∑ ∓#qcosθ( )

p
= Ω

8π 3 dφ
o

2π

∫ S
!
p,
!′p( ) ∓#qcosθ( )

p−1

+1

∫
0

∞

∫ d cosθ( )q2dq
	

	
or	
	

   

1
τ m

= Ω
4π 2 Cq Nωq

+ 1
2
∓

1
2

⎛
⎝⎜

⎞
⎠⎟
δ ±cosθ + "q

2 p
∓
ω q

υq
⎛

⎝
⎜

⎞

⎠
⎟
∓"qcosθ( )

p−1

+1

∫
0

∞

∫ d cosθ( )q2dq 	

	

Now	assume	equipartition:	
   
Nωq

≈ Nωq
+1≈

kBT
!ω q

	and	use	the	expression	for	 
Cβ .	

	

   

1
τ m

=
m*DA

2kBT
4π!ρ p2υS

2 δ ±cosθ + !q
2 p
∓
ω q

υq
⎛

⎝
⎜

⎞

⎠
⎟ ∓cosθ( )

−1

+1

∫
0

∞

∫ d cosθ( )q2dq
	

	
Integrate	over	β 	first:	

	

   

1
τ m

=
m*DA

2kBT
4π!ρ p2υS

2

!q
2 p
∓
ω q

υq
⎛

⎝
⎜

⎞

⎠
⎟

qmin

qmax

∫ q2dq =
m*DA

2kBT
4π!ρ p2υS

2

!q
2 p
∓
υS

υ
⎛
⎝⎜

⎞
⎠⎟qmin

qmax

∫ q2dq 	

	
where	we	have	used	the	acoustic	phonon	dispersion	for	the	last	step.	
	

   

1
τ m

=
m*DA

2kBT
4π!ρ p2υS

2

!
2 p

qmax
4

4
−

qmin
4

4

⎛

⎝⎜
⎞

⎠⎟
∓
υS

υ
qmax

3

3
−

qmin
3

3

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Assume	  qmax >> qmin 	and	  qmax

4 >> qmax
3 	

	

  

1
τ m

=
m*DA

2kBT
8πρ p3υS

2

qmax
4

4

⎛

⎝⎜
⎞

⎠⎟
	

	
Energy	and	momentum	conservation	gives	(see	FCT,	eqn.	2.54)	
	

   
!qmax = 2 p 1±

υS

υ
⎛
⎝⎜

⎞
⎠⎟
	

	

   

qmax
4

4
= 4 p4

!4 1±
υS

υ
⎛
⎝⎜

⎞
⎠⎟

4

	

	
so	the	momentum	relaxation	rate	becomes:	
	

   

1
τm

=
m* pDA

2kBT
2π4ρυS

2 1±
υS

υ
⎛

⎝⎜
⎞

⎠⎟

4

=
m* pDA

2kBT
2π4c

1±
υS

υ
⎛

⎝⎜
⎞

⎠⎟

4

	

	
Recall	that	the	3D	density-of-states	is:	
	

   
D3D E( ) = 2m*( )3/2

4π 23 E1/2

	
	
which	can	be	used	to	re-express	the	momentum	relaxation	rate	as:	
	

   

1
τ m E( ) =

m*DA
2kBT
c

D3D E( )
2

1±
υS

υ
⎛
⎝⎜

⎞
⎠⎟

4

,	

	
which	is	almost	exactly	the	result	for	elastic	scattering	(eqn.	(2.84)	of	FCT)	since	for	
a	typical	electron	 υ <<υS .	


