Quiz ANSWERS Week 6 ECE 656: Electronic Conduction In Semiconductors Mark Lundstrom Purdue University, Fall 2017

- 1) What are the special properties of a contact in the Landauer model?
 - a) Strong inelastic scattering keeps them near equilibrium.
 - b) Any electron incident upon the contact is completely absorbed (no reflections).
 - c) Each contact is described by its own Fermi level.
 - d) Contacts have a very large number of channels (modes) compared to the device.

e) All of the above.

2) Which of the follow is true about the Landauer expression for current:

 $I = (2q/h) \int \mathcal{T}(E) M(E) (f_1 - f_2) dE ?$

- a) It applies to electrons in the conduction band.
- b) It applies to electrons in the valence band.
- c) It applies to holes in the valence band.
- d) It applies to **both** <u>electrons</u> in the conduction band and <u>holes</u> in the valence band.
- e) It applies to both <u>electrons</u> in the conduction band and <u>electrons</u> in the valence band.
- 3) What are the units of the quantity, $h\langle v_x^+(E)\rangle D(E)/4$? The units of D(E) are J⁻¹.
 - a) Energy
 - b) One over energy
 - c) Ohms
 - d) One over Ohms or Siemens.
 - e) The quantity is unitless.
- 4) What is meant by the term "near-equilibrium" transport?
 - a) The contacts stay very close to equilibrium.
 - b) The Fermi level in the contact is close to its equilibrium value.
 - c) The Fermi levels of the two contacts, f_1 and f_2 , can be replaced by the equilibrium Fermi level.
 - d) The difference in Fermi levels between the two contacts can be replaced by a first order Taylor series expansion of $f_1 f_2$.
 - e) The temperature of the two contacts is the same.

5) Consider a small nano-device under bias with a steady-state current flowing. Which of the following is true?

a) One contact tries to fill states in the device and the other one tries to empty them.

- b) Both contacts try to fill states in the device.
- c) Both contacts try to empty states in the device.
- d) All of the above.
- e) None of the above.
- 6) Mathematically, the number of modes (channels) at energy, *E*, is proportional to what?
 - a) The density of states.
 - b) The velocity.
 - c) The density of states times velocity.
 - d) The density of states divided by velocity.
 - e) The deBroglie wavelength.
- 7) How is the transmission, \mathcal{T} , related to the mean-free-path for backscattering, λ , and the length of the resistor, *L*?
 - a) $\mathcal{T} = e^{-L/\lambda}$.
 - b) $\mathcal{T} = e^{+L/\lambda}$.
 - c) $\mathcal{T} = \lambda/L$.
 - d) $\mathcal{T} = L/\lambda$.

$$e) \quad \mathcal{T} = \lambda / (\lambda + L).$$

8) For parabolic band semiconductors, M(E) is independent of energy (above the bottom of the conduction band) for which of the following cases?

a) 1D

- b) 2D
- c) 3D
- d) 1D and 2D
- e) 2D and 3D

9) Under what conditions does the Landauer expression for current,

$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE \text{ , apply}?$$

- a) Near-equilibrium.
- b) For near-ballistic transport conditions, $L \ll \lambda$.
- c) For diffusive transport conditions, $L >> \lambda$
- d) Far from equilibrium.

e) All of the above.

- 10) When should we NOT use the Landauer expression, $I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 f_2) dE$?
 - a) When quantum transport is important.
 - b) When semi-classical transport dominates.
 - c) When the temperatures of the two contacts are different.
 - d) When hole conduction dominates.
 - e) When it is necessary to spatially resolve quantities inside the device.
- 11) The electron current equation commonly used in semiconductor physics is written as $J_n = \sigma_n d(F_n/q)/dx$. To derive this from the Landauer approach, what assumptions are needed?
 - a) Near-equilibrium transport.
 - b) Constant temperature.
 - c) A conductor that is many mean-free-paths long.
 - d) Answers a) and c) above
 - e) Answers a) b), and c) above.
- 12) The drift-diffusion equation commonly used in semiconductor physics is written as $J_{nx} = nq\mu_n \mathcal{E}_x + qD_n dn/dx$. What assumption is **NOT needed** to derive this equation from the Landauer approach?
 - a) Near-equilibrium transport.
 - b) Constant temperature.
 - c) A conductor that is many mean-free-paths long.
 - d) Maxwell-Boltzmann statistics.
 - e) Steady-state conductions.

13) Which of the following is correct about the conductivity of a 2D metal?

a)
$$\sigma_s = q^2 D_n (E_F) D_{2D} (E_F)$$

b) $\sigma_s = q^2 D_{2D} (E_F) \frac{v^2 (E_F) \tau (E_F)}{2}$
c) $\sigma_s = \frac{2q^2}{h} M_{2D} (E_F) \lambda (E_F)$
d) $\sigma_s = n_s q \left(\frac{q \tau (E_F)}{m^*} \right)$
e) All of the above are correct.

14) What is the quantity:
$$\frac{2q}{hn_s} \int \lambda(E) M_{2D}(E) \left(-\frac{\partial f_0}{\partial E}\right) dE$$
?

- a) The conductivity of a 2D material.
- b) The mobility of a 2D material.
- c) The diffusion coefficient of a 2D material.
- d) The average mean-free-path of a 2D material.
- e) The resistivity of a 2D material.

15) How can we determine if a long resistor is operating in near-equilibrium conditions?

a) The voltage across the resistor must be less that $k_{B}T/q$.

b) The measured current is proportional to the applied voltage.

- c) The magnitude of the electric field satisfies $\mathcal{E} \ll (k_{B}T/q)/\lambda_{E}$ where λ_{E} is the energy relaxation length.
- d) a) and b) above.
- e) a), b), and c) above.

16) The expression for the ballistic conductance, $G_{ball} = \frac{2q^2}{h} M(E_F)$ is valid when?

- a) In the degenerate limit.
- b) For 1D and 2D conductors.
- c) For isothermal conditions.
- d) For ballistic conductors
- e) All of the above.

- 17) In general, we can write the ballistic conductance as $G_{ball} = \frac{2q^2}{h} \langle M \rangle$. What is $\langle M \rangle$?
 - a) The number of channels.
 - b) The number of channels at the Fermi energy.
 - c) The average number of channels in the Fermi window.
 - d) The number of channels at the bottom of the conduction band.
 - e) The total number of channels in the Fermi window.
- 18) The expression for the resistance, $R = R_{\text{ball}} (1 + L/\lambda_0)$ is **not valid** under what conductions?
 - a) In the ballistic limit.
 - b) In the diffusive limit.
 - c) In between the ballistic and diffusive limits
 - d) When the mean-free-path depends on energy.
 - e) Under non-degenerate conductions.
- 19) For a ballistic resistor, the power dissipated is $P_D = IV = V^2/R$. Where is this power dissipated?
 - a) Uniformly within the resistor
 - b) Near the two ends of the resistor
 - c) In the contact with the most positive voltage
 - d) In the contact with the most negative voltage
 - e) In the two contacts.
- 20) For a ballistic resistor, with a voltage, *V*, applied across it, where does the voltage drop?
 - a) Uniformly within the resistor.
 - b) Near the two ends of the resistor.
 - c) In the contact with the most positive voltage.
 - d) In the contact with the most negative voltage.
 - e) In the two contacts.