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SOLUTIONS:	ECE	656	Homework	(Week	7)	
Mark	Lundstrom	
Purdue	University	

	
	
1)	 This	homework	exercise	will	help	you	become	familiar	with	how	B	–fields	affect	

transport	
	

Consider	the	equation	of	motion	for	an	average	electron,		
	

  

!
Fe = −q

!
E - q !υ ×

!
B = d

!p
dt
		.	 	 	 	 	 	 	 	 (i)	

	
Assume	that	the	electron	moves	for	a	time,	τm ,	then	scatters,	returning	the	average	
momentum	to	zero,	so	

	

 

dp
dt

= − p
τ m

	.	 	 	 	 	 	 	 	 	 	 (ii)	

	
Assuming	that	 

!p = m* !υ ,	we	find	an	equation	for	the	average	velocity	as	
	

  

!
υ = − qτ

m*

!
E - qτ

m*

!
υ ×
!
B .	 	 	 	 	 	 	 	 	 (iii)	

	
This	equation	can	be	solved	exactly	for	the	velocity		(see	prob.	4.18,	Lundstrom,	
Fundamentals	of	Carrier	Transport,	2000),	but	let’s	take	a	different	approach.	

	
1a)	 Assume	carriers	move	in	2D	and	that	only	a	z-directed	B-field	is	present.	

Evaluate	eqn.	(iii)	and	find	two	coupled	equations	forυx 	and	υy 	.	
	

Solution:	

Assuming	a	z-directed	B-field,	it	is	straightforward	to	show	from	(iii)	that	

 

υx = − qτ m
m* E x −

qτ m
m* υyBz

υy = − qτ m
m* E y +

qτ m
m* υxBz

	 	 	 	 	 	 	 (*)	
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ECE	656	Homework	Solutions	(Week	7)		(continued)	
	

1b)	 Solve	the	two	equations	for	υx 	and	υy 	in	terms	of	the	electric	field	and	the	B-
field.	
	

Solution:	

From	(*),	it	is	straightforward	to	show:	

 

υx =
−µnE x + µn

2E yBz
1+ ω cτ( )2

υy =
−µnE y − µn

2E xBz
1+ ω cτ( )2

	 	 	 	 	 	 	 	 	 (**)	

Where	ω c =
qBz
m* 	is	the	so-called	cyclotron	frequency.	

	
	

1c)	 Write	the	current	densities	as	
	

 Jx = −nSqυx 		 	 	 	 	 	 	 (iva)	

 
J y = −nSqυ y 	 	 	 	 	 	 	 (ivb)	
	
and	use	the	results	of	problem	5b)	to	find	the	current	densities	as	

 
Jx = −nqυx =

σ n

1+ µn Bz( )2
E x − µn BzE y( )

	 	 	 	 	 	 (va)

 
Jy = −nqυy =

σ n

1+ µn Bz( )2
E y + µn BzE x( )

,		 	 	 	 	 (vb)	
	
which	can	also	be	written	as	
	

 

Jx
Jy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= σ n

1+ µn Bz( )2
1 −µnBz

µnBz 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E x

E y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	 	 	 	 (via)	

or	as	

 Ji = σ ij Bz( )E j .	 	 	 	 	 	 	 	 	 (vib)	
	
Note	that	the	magnetic	field	affects	both	the	diagonal	and	off-diagonal	
components	of	the	magnetoconductivity	tensor.	Explain	why	there	is	no	Hall	
factor,	 rH ,	in	the	result.	
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ECE	656	Homework	Solutions	(Week	7)		(continued)	

Solution:	
These	results	follow	directly	from	(**).			Note	that	we	are	considering	the	motion	of	an	
average	electron	with	a	momentum	relaxation	time	of	 τ m .		We	are	neglecting	the	
variation	of	scattering	time	with	energy	and	considering	only	an	average	case.			
	
Consequently,	 τ m = τ m 	and	  

τ m
2 = τ m

2 	and	the	Hall	factor	is	one.		The	algebra	in	this	
approach	is	simpler,	but	we	are	missing	the	fact	that	there	is	a	Hall	factor.	

	
1d)		 Solve	eqn.	(via)	for	the	electric	field	and	show	that	

	

   

E x

E y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
σ n

1 µnBz

−µnBz 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Jx

J y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	 	 	 	 	 (vii)	

	
According	to	eqn.	(vii),	the	longitudinal	magnetoresistivity	is	independent	of	
the	B-field	(while	the	longitudinal	magnetoconductivity	depends	on	B	as	
shown	in	eqn.	(via).		Equation	(vii)	shows	that	the	Hall	voltage	is	proportional	
to	B.	

Solution:	
We	can	re-write	(vi)	as	

 

Jx
Jy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

σ L −σ T

σ T σ L

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E x

E y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	 	 	 	 	 	 	 (***)	

where	

σ L =
σ n

1+ µn Bz( )2
	 σ T =

σ nµnBz
1+ µn Bz( )2

	

If	we	invert	(***),	we	find	

 

E x

E y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ρL ρT
−ρT ρL

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Jx
Jy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	 	 	 	 	 	 	 (****)	

where	

ρL =
σ L

σ L
2 +σ T

2 = 1
σ n

	 	 ρT =
σ T

σ L
2 +σ T

2 =
µnBz
σ n
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ECE	656	Homework	Solutions	(Week	7)		(continued)	

	
The	final	result,	

   

E x

E y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
σ n

1 µnBz

−µnBz 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Jx

J y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	

	

shows	that	the	longitudinal	magnetoresistivity	is	independent	of	B	while	the	
longitudinal	magnetoconductivity	(from	(via))	depends	on	the	B-field.		Comparing	
to	prob.	5),	we	see	that	we	get	the	same	result	for	the	magnetoresistivity	without	
assuming	a	small	B-field.	

	
1e)	 Show	that	for	small	B-fields,	eqn.	(via)	can	be	written	as	

	

    
!
Jn =σ n

!
E - σ nµn( ) !E ×

!
B 	 	 	 	 	 	 	 (vii)	

	
Note	that	while	this	analysis	is	simpler	than	solving	the	BTE,	by	beginning	with	an	
average	electron	with	an	average	momentum,	 

!p ,	we	have	missed	the	averaging	of	
the	distribution	of	momenta	which	leads	to	a	non-unity	Hall	factor,	 rH .		

	

Solution:	

Simply	expand	out	(vii)	and	show	that	it	gives	(via)	for	small	B.	

  

Jx
Jy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= σ n

1+ µn Bz( )2
1 −µnBz

µnBz 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E x

E y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

≈σ n

1 −µnBz
µnBz 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E x

E y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=σ n


E - σ nµn( )


E ×


B

	

	
	
	
2)	 Hall	factors	are	important	to	consider	when	analyzing	experiments.		Answer	the	

following	questions.	
	

2a)	 Assuming	parabolic	energy	bands,	derive	an	expression	for	the	Hall	factor	in	3D	
and	show	that	for	ionized	impurity	scattering,	it	gives	 rH = 1.93 .	
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ECE	656	Homework	Solutions	(Week	7)		(continued)	
	

Solution:	

The	definition	of	the	Hall	factor	is:	

  
rH ≡ τ m

2 τ m

2
	 	 	 	 	 	 	 	 (i)	

Assume	power	law	scattering:	

  τ m = τ 0 E kBTL( )s
	

Recall	that	the	average	scattering	time	is:	

  
τ m = τ 0

Γ s+5 2( )
Γ 5 2( ) 	

Note	also	that	

  τ m
2 = τ 0

2 E kBTL( )2s
	

is	in	power	law	form	with	a	characteristic	exponent	of	2s	instead	of	s,	so	

  
τ m

2 = τ 0
2 Γ 2s+5 2( )

Γ 5 2( ) 	

and	

  

rH =
Γ 2s+5 2( )Γ 5 2( )

Γ s+5 2( )⎡⎣ ⎤⎦
2 = 1.93 	

Now	using	(i),	we	find	

  

rH =
Γ 2s+5 2( )Γ 5 2( )

Γ s+5 2( )⎡⎣ ⎤⎦
2 	

Assuming	  s = 3/ 2 	for	II	scattering,	we	find	

  

rH =
Γ 11 2( )Γ 5 2( )

Γ 4( )⎡⎣ ⎤⎦
2 	

Recall	some	properties	of	the	Gamma	function:	

  Γ(n) = n−1( )! 	(when	n	is	an	integer)	

 Γ(1/ 2) = π 	

  Γ( p +1) = pΓ( p) 	
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ECE	656	Homework	Solutions	(Week	7)		(continued)	

	
Accordingly,	we	find:	

 Γ(4) = 3( )!= 6 	

 
Γ(11/ 2) = 9

2
Γ(9 2) = 9

2
7
2
Γ(7 2) = 9

2
7
2

5
2
Γ(5 2) 	

 
Γ(5 / 2) = 3

2
Γ(3 2) = 3

2
1
2
Γ(1 2) = 3

4
π 	

Putting	it	all	together:	

  

rH =
Γ 11 2( )Γ 5 2( )

Γ 4( )⎡⎣ ⎤⎦
2 =

9
2

7
2

5
2

3
4

π 3
4

π

6× 6
= 22π

36
= 1.9828 	

  
rH = 1.9828

	
	

2b)	 Assume	parabolic	energy	bands	and	develop	an	expression	for	the	Hall	factor	in	
2D.		

Solution:	

Recall	that	for	2D,	parabolic	bands,	non-degenerate	conditions	

  
τ m = τ 0

Γ s+ 2( )
Γ 2( ) 	

As	in	7a),	we	find	

  
τ m

2 = τ 0
2 Γ 2s+ 2( )

Γ 2( ) 	

So	the	Hall	factor	is	

  

rH ≡
τ m

2

τ m

2 =

Γ 2s+ 2( )
Γ 2( )

Γ s+ 2( )
Γ 2( )

⎛

⎝
⎜

⎞

⎠
⎟

2 =
Γ 2s+ 2( )Γ 2( )

Γ s+ 2( )2 	

  

rH =
Γ 2s+ 2( )Γ 2( )

Γ s+ 2( )2 	

	
2c)	 Ionized	impurity	scattering	in	graphene	is	said	to	vary	as	E.		What	is	the	Hall	

factor	for	graphene?	
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Solution:	

We	cannot	use	the	results	from	6b),	because	the	energy	bands	in	graphene	are	not	

parabolic	and	because	graphene	is	highly	degenerate.		Under	degenerate	conditions,	

only	the	scattering	time	at	the	Fermi	level	matters,	so	

 
τ m = τ m EF( ) 	

  
τ m

2 = τ m EF( ){ }2
	

Accordingly,		

  
rH = τ m

2 τ m

2
= 1 	

Independent	of	the	type	of	scattering.	

	
	
	


