Quiz Week 7 ECE 656: Electronic Conduction In Semiconductors Mark Lundstrom Purdue University, Fall 2017

- 1) Why is the BTE harder to solve in the presence of a B-field?
 - a) Because we are no longer near equilibrium.
 - b) Because non-degenerate statistics must be used.
 - c) Because the cross product makes the math more difficult.
 - d) Because the gradient in momentum space can no longer be approximated by the gradient of f_s .
 - e) Because the gradient in position space can no longer be approximated by the gradient of f_s .

2) In this equation, $\vec{J}_n = \sigma_s \vec{\mathcal{E}} - \sigma_s \mu_H (\vec{\mathcal{E}} \times \vec{B})$, what is μ_H ?

- a) The mobility.
- b) The effective mobility.
- c) The conductivity mobility.
- d) The chemical potential.
- e) The Hall mobility.

3) What is the quantity, $\langle \langle \tau_m^2 \rangle \rangle / \langle \langle \tau_m \rangle \rangle^2$, called?

- a) The Hall mobility.
- b) The Hall coefficient.
- c) The Hall factor.
- d) The Hall concentration.
- e) The Hall parameter.
- 4) What quantity does a Hall effect measurement find?
 - a) The Hall mobility.
 - b) The mobility.
 - c) The Hall concentration.
 - d) The carrier concentration.
 - e) The Hall resistivity.

(continued on next page)

- 5) What does the criterion $\omega_c \tau_m \ll 1$ imply?
 - a) Electrons scattering many times before completing a cyclotron orbit.
 - b) The magnetic field is low.
 - c) Shubnikov-deHaas oscillations will not be observed.
 - d) All of the above.
 - e) None of the above.

6) Assume that $\vec{B} = B_z \hat{z}$ what is J_y according to $J_i = \sigma_s \mathcal{E}_i - \sigma_s \mu_H \varepsilon_{ijk} \mathcal{E}_j B_k$?

- a) $J_y = \sigma_s \mathcal{E}_y$ b) $J_y = -\sigma_s \mu_H \mathcal{E}_x B_z$ c) $J_y = +\sigma_s \mu_H \mathcal{E}_x B_z$ d) $J_y = \sigma_s \mathcal{E}_y - \sigma_s \mu_H \mathcal{E}_x B_z$
- e) $J_y = \sigma_s \mathcal{E}_y + \sigma_s \mu_H \mathcal{E}_x B_z$

7) We have seen that for parabolic bands in 2D with non-degenerate conditions, $\langle \langle \tau_m \rangle \rangle = \tau_0 \Gamma(s+2) / \Gamma(2)$. What is the Hall coefficient, $r_H \equiv \langle \langle \tau_m^2 \rangle \rangle / \langle \langle \tau_m \rangle \rangle^2$ is 2D?

a)
$$r_{H} = \Gamma(2s+2) / [\Gamma(2)].$$

b) $r_{H} = \Gamma(2s+2) \Gamma(2) / [\Gamma(s+2)]^{2}$
c) $r_{H} = \Gamma(2s+2) \Gamma(s+2) / [\Gamma(2)]^{2}$
d) $r_{H} = \Gamma(s+2) \Gamma(2) / [\Gamma(2s+2)]^{2}$

e) $r_H = \Gamma(3s+2)\Gamma(2)/[\Gamma(2s+2)]$.