Quiz ANSWERS Week 7

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2017

- 1) Why is the BTE harder to solve in the presence of a B-field?
 - a) Because we are no longer near equilibrium.
 - b) Because non-degenerate statistics must be used.
 - c) Because the cross product makes the math more difficult.
 - d) Because the gradient in momentum space can no longer be approximated by the gradient of f_s .
 - e) Because the gradient in position space can no longer be approximated by the gradient of f_s .
- 2) In this equation, $\vec{J}_n = \sigma_S \vec{\mathcal{E}} \sigma_S \mu_H (\vec{\mathcal{E}} \times \vec{B})$, what is μ_H ?
 - a) The mobility.
 - b) The effective mobility.
 - c) The conductivity mobility.
 - d) The chemical potential.
 - e) The Hall mobility.
- 3) What is the quantity, $\left\langle \left\langle \tau_{\scriptscriptstyle m}^2 \right\rangle \right\rangle / \left\langle \left\langle \tau_{\scriptscriptstyle m} \right\rangle \right\rangle^2$, called?
 - a) The Hall mobility.
 - b) The Hall coefficient.
 - c) The Hall factor.
 - d) The Hall concentration.
 - e) The Hall parameter.
- 4) What quantity does a Hall effect measurement find?
 - a) The Hall mobility.
 - b) The mobility.
 - c) The Hall concentration.
 - d) The carrier concentration.
 - e) The Hall resistivity.

(continued on next page)

- 5) What does the criterion $\omega_c \tau_m \ll 1$ imply?
 - a) Electrons scatter many times before completing a cyclotron orbit.
 - b) The magnetic field is low.
 - c) Shubnikov-deHaas oscillations will not be observed.
 - d) All of the above.
 - e) None of the above.
- 6) Assume that $\vec{B} = B_z \hat{z}$ what is J_y according to $J_i = \sigma_s \mathcal{E}_i \sigma_s \mu_H \varepsilon_{ijk} \mathcal{E}_j B_k$?

a)
$$J_y = \sigma_s \mathcal{E}_y$$

b)
$$J_y = -\sigma_S \mu_H \mathcal{E}_x B_z$$

c)
$$J_v = +\sigma_S \mu_H \mathcal{E}_x B_z$$

d)
$$J_v = \sigma_s \mathcal{E}_v - \sigma_s \mu_H \mathcal{E}_x B_z$$

$$e) \quad J_v = \sigma_S \mathcal{E}_v + \sigma_S \mu_H \mathcal{E}_x B_z$$

7) We have seen that for parabolic bands in 2D with non-degenerate conditions, $\left\langle \left\langle \tau_{\scriptscriptstyle m} \right\rangle \right\rangle = \tau_{\scriptscriptstyle 0} \, \Gamma \big(s + 2 \big) / \Gamma \big(2 \big)$. What is the Hall coefficient, $r_{\scriptscriptstyle H} \equiv \left\langle \left\langle \tau_{\scriptscriptstyle m}^2 \right\rangle \right\rangle / \left\langle \left\langle \tau_{\scriptscriptstyle m} \right\rangle \right\rangle^2$ in 2D?

a)
$$r_H = \Gamma(2s+2)/[\Gamma(2)].$$

b)
$$r_H = \Gamma(2s+2)\Gamma(2)/[\Gamma(s+2)]^2$$

c)
$$r_H = \Gamma(2s+2)\Gamma(s+2)/[\Gamma(2)]^2$$

d)
$$r_H = \Gamma(s+2)\Gamma(2)/[\Gamma(2s+2)]^2$$

e)
$$r_H = \Gamma(3s+2)\Gamma(2)/[\Gamma(2s+2)]^2$$
.