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SOLUTIONS:	ECE	656	Homework	(Week	9)	
Mark	Lundstrom	
Purdue	University	

	
	
1)	 We	have	asserted	that	  Δn = 2kBT 	for	a	non-degenerate,	3D	semiconductor	with	

parabolic	energy	bands	and	an	energy-independent	mean-free-path	for	
backscattering.		This	means	that	the	average	energy	at	which	current	flows	is	  2kBT 	
above	the	bottom	of	the	conduction	band.		Repeat	the	calculation,	but	this	time	
assume	power	law	scattering,		

	

  
λ E( ) = λ0 E − EC( ) kBT( )⎡⎣ ⎤⎦

r
	.	

	
What	is	 Δn 	in	this	case?	
	

Solution:	

	

	

  
′σ n E( ) = 2q2

h
M E( )

A
λ E( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟
	

  

Δn =
E − EC( ) 2q2

h
M E( )

A
λ0 E − EC( ) kBT⎡⎣ ⎤⎦

r
−
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫
2q2

h
M E( )

A
λ0 E − EC( ) kBT⎡⎣ ⎤⎦

r
−
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫
	

Most	constants	cancel	(remember	that	 
M ∝ E − EC( ) in	3D)	and	we	find	

  

Δn =
E − EC( )2

E − EC( ) kBT⎡⎣ ⎤⎦
r
−
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫

E − EC( ) E − EC( ) kBT⎡⎣ ⎤⎦
r
−
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫
	

 η = E − EC( ) kBT 		 	 	  ηF = EF − EC( ) kBT 	
	

  

Δn =
kBT( )2

η2+r −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

kBT dη∫

kBTη1+r −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

kBT dη∫
	

	

 
Δn =

E − EC( ) ′σ E( )dE∫
′σ E( )dE∫
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ECE	656	Homework	Solutions	(Week	9)		(continued)	

  

Δn = kBT

∂
∂ηF

η2+r f0 dη∫
∂

∂ηF

η1+r f0 dη∫
= kBT × num

dem
	

   
num = ∂

∂ηF

η2+r f0 dη∫ = ∂
∂ηF

Γ 3+ r( )F 2+r ηF( ) = Γ 3+ r( )F 1+r ηF( ) 	

   
dem = ∂

∂ηF

η1+r f0 dη∫ = ∂
∂ηF

Γ 2+ r( )F 1+r ηF( ) = Γ 2+ r( )F r ηF( ) 	
Putting	this	together:	

   

Δn = kBT

∂
∂ηF

η2+r f0 dη∫
∂

∂ηF

η1+r f0 dη∫
= kBT × num

dem
= kBT

Γ 3+ r( )F 1+r ηF( )
Γ 2+ r( )F r ηF( ) 	

   

Δn = kBT
Γ 3+ r( )F 1+r ηF( )
Γ 2+ r( )F r ηF( ) 	

	
For	nondegenerate	statistics,	Fermi-Dirac	integrals	become	exponentials	and	we	find:	
	

  

Δn = kBT
Γ 3+ r( )
Γ 2+ r( ) 	

For	  r = 0 this	gives	  Δn = 2kBT ,	as	expected.	

For	ionized	impurity	scattering,	  r = 2 	and	we	find	
  
Δn = kBT

Γ 5( )
Γ 4( ) = 4kBT .	

	

2)	 Repeat	prob.	1)	in	the	strongly	degenerate	limit,	and	use	the	result	to	explain	why	the	
Seebeck	coefficient	of	a	metal	approaches	zero.	

	 	 	 	

		
Solution:	

Let’s	begin	at:	

  

Δn =
E − EC( )2

E − EC( ) kBT⎡⎣ ⎤⎦
r
−
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫

E − EC( ) E − EC( ) kBT⎡⎣ ⎤⎦
r
−
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫
	 	 	 	 	(i)	

	
but	assume	  −∂ f0 ∂E( ) = δ EF( ) 	to	find:	
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ECE	656	Homework	Solutions	(Week	9)		(continued)	
	

  

Δn =
EF − EC( )2

EF − EC( ) kBT⎡⎣ ⎤⎦
r

EF − EC( ) EF − EC( ) kBT⎡⎣ ⎤⎦
r = EF − EC( )

	
	

 
Δn = EF − EC( )

	
The	Seebeck	coefficient	is	

 
Sn = −

EJ − EF( )
qT 	 	 	 	 	 	 	 	 (ii)	

 EJ = EC + Δn = EC + EF − EC = EF 	
 EJ = EF .		Current	flows	at	the	Fermi	level,	so	by	(ii),	  Sn = 0 .	

	
	
3)	 For	practical	TE	devices,	the	semiconductor	is	doped	so	that	 EF ≈ EC .	Work	out	the	

four	thermoelectric	transport	coefficients	for	n-type	Ge	doped	at	  N D = 1019 cm-3 .	You	
may	assume	that	T	=	300	K,	that	the	dopants	are	fully	ionized,	and	that	the	mean-free-
path	for	backscattering,	 λ0 ,	is	independent	of	energy.	
	

Use	the	following	material	parameters:	
	
  T = 300 K 	

  NC = 1.04 ×1019 cm-3 	

  µn = 330 cm2 /V-s 	

  m
* = 0.12m0 	

	You	may	assume	non-degenerate	carrier	statistics	(but	realize	that	this	
assumption	may	not	well-justified	for	 EF ≈ EC ,	which	is	the	case	here,	so	we	will	only	
obtain	estimates).	Work	out	approximate,	numerical	values	for	 λ0 ,	 ρ ,	S,	π ,	and	 κ e .	

	
Solution:	
	

Compute	the	thermal	velocity:	

  
υT =

2kBT
πm* = 1.55×107 cm/s 	

where	we	have	used	the	conductivity	effective	mass	of	Ge:		  m
* = 0.12m0 .	
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ECE	656	Homework	Solutions	(Week	9)		(continued)	
	
Recall	that	the	definition	of	conductivity	effective	mass	for	Si	and	Ge	is:	

   

1
mc

* ≡
1
3

1
m

* +
2

mt
*

⎛

⎝⎜
⎞

⎠⎟
		

	
Now	use	the	diffusion	coefficient	to	determine	the	mean-free-path.	

  
Dn =

kBT
q

µn = 8.6cm2 s 	 	
  
Dn =

υTλ0

2
cm2 /s 	

  
λ0 =

2Dn

υT

= 11.1×10−7 cm 	 	
 
λ0 = 11.1 nm 	

  
ρ = 1 n0qµn( ) = 1 1019 ×1.6×10−19 × 330( ) = 0.0019Ω-cm 	

 
ρ = 0.0019Ω-cm 	

S = kB
−q

⎛
⎝⎜

⎞
⎠⎟

Ec − EF( )
kBT

+δ n

⎧
⎨
⎩

⎫
⎬
⎭
	

  Ec − EF( ) kBT ≈ ln NC n0( ) 	 	   NC = 1.04×1019 cm-3 	

  
Ec − EF( ) kBT ≈ ln 1.04×1019( ) 1019( ) = 3.9×10−2 	 	   δ n ≈ 2 	

S = kB
−q

⎛
⎝⎜

⎞
⎠⎟

Ec − EF( )
kBT

+δn
⎧
⎨
⎩

⎫
⎬
⎭
≈ −86 µV/K × 3.92 ×10−2 + 2{ } = −175µV/K 	

S = −175µV/K 	
	
π = TS ≈ −0.05 V 	
	

  κ e = TσL = TL ρ 	    L ≈ 2 kB q( )2
	

(We	are	using	the	factor	of	2	because	we	assume	nondegenerate	carrier	statistics.)	

  
κ e =

T × 2 kB q( )2

ρ
= 0.24  W/m-K 	

	

  
κ e = 0.24  W/m-K 	
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ECE	656	Homework	Solutions	(Week	9)		(continued)	
	

4)	 Perhaps	we	should	use	Fermi-Dirac	statistics	for	thermoelectric	calculations	when	

 EF ≈ Ec .		Repeat	problem	3),	but	this	time	use	Fermi-Dirac	statistics	to	determine	the	
approximate	values	of	 λ0 ,	 ρ ,	S,	π ,	and	 κ e .		You	might	find	it	useful	to	know	that	

    
σ 3D = 2q2

h
λ0

gV m*kBT
2π2

⎛

⎝⎜
⎞

⎠⎟
F 0 ηF( ) 	and	

 
S = − kB

q
⎛
⎝⎜

⎞
⎠⎟
2F 1 ηF( )
F 1 ηF( ) −ηF

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	

	
Solution:	

The	conductivity	does	not	change	from	prob.	3):	
	

  σ 3D = 1 ρ = 1 0.0019 = 526 S/cm 	

From:		
    
σ 3D = 2q2

h
λ0

m*kBT
2π2

⎛

⎝⎜
⎞

⎠⎟
F 0 ηF( ) ,	we	can	solve	for	the	MFP	in	terms	of	the	

conductivity:	
	

    

λ0 =
σ 3D

2q2

h
⎛
⎝⎜

⎞
⎠⎟

gV

m*kBT
2π2

⎛

⎝⎜
⎞

⎠⎟
F 0 ηF( )

	

To	proceed,	we	must	find	 ηF 	using:	
	

   n0 = 1019 = NCF 1/2 ηF( ) = 1.04×1019F 1/2 ηF( ) 	

   
ηF =F 1/2

−1 1019

1.04×1019

⎛
⎝⎜

⎞
⎠⎟
=F 1/2

−1 0.962( ) = 0.297 		

(computed	with	the	iPhone	app	or	with	the	nanoHUB	tool:		
http://nanohub.org/resources/11396)	

    

λ0 =
σ 3D

2q2

h
⎛
⎝⎜

⎞
⎠⎟

gV

m*kBT
2π2

⎛

⎝⎜
⎞

⎠⎟
F 0 ηF( )

= 5.26×104   S/m
7.71×10−5( ) 6.37 ×1016( )F 0 0.297( ) = 0.13×10−7 m 	

	
where	we	used	the	“distribution	of	modes	effective	mass,”		  m

* = 1.18m0 .		For	a	
discussion	of	distribution	of	modes	(DOM)	effective	mass,	see:	
	

Changwook	Jeong,	Raseong	Kim,	Mathieu	Luisier,	Supriyo	Datta,	and	Mark	
Lundstrom,	“On	Landauer	vs.	Boltzmann	and	Full	Band	vs.	Effective	Mass	
Evaluation	of	Thermoelectric	Transport	Coefficients,”	J.	Appl.	Phys.,	Vol.	107,	
023707,	2010.	
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ECE	656	Homework	Solutions	(Week	9)		(continued)	
	

 
λ0 = 13 nm 	 	 a	bit	longer	than	for	MB	statistics	

	

 
ρ = 0.0019Ω-cm 	 same	as	before	
	

 
S = − kB

q
⎛
⎝⎜

⎞
⎠⎟
2F 1 ηF( )
F 0 ηF( ) −ηF

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= −86 ×10−6 2F 1 0.297( )

F 0 0.297( ) − 0.297
⎧
⎨
⎩

⎫
⎬
⎭
= −186µV/K 	

	
S = −186 µV/K 	

π = TS ≈ −0.06 V 	
	

  κ e = TσL = TL ρ 	
   
L ≈ π 2

3
kB q( )2

	

(We	are	using	the	fully	degenerate	Lorenz	number,	for	simplicity.)	

  
κ e =

T × π 2

3
kB q( )2

ρ
= 0.40  W-m/K 	

	

  
κ e = 0.40  W-m/K 	

	
5)	 We	have	discussed	two	different	electronic	thermal	conductivities	–	one	measured	

under	short	circuit	conditions,	 κ 0 ,	and	one	measured	under	open	circuit	conditions,	

 κ e .	The	two	are	related	according	to:	

  κ e =κ 0 −TσS 2 	
	

Using	the	estimated	TE	transport	coefficients	for	Ge	doped	such	that	 EF ≈ EC 	(from	
prob.	4)	find	the	numerical	value	of		the	ratio,	  κ 0 κ e .		

	
Solution:	

The	relation	between	the	two	electronic	thermal	conductivities	is:	
	

  κ e =κ 0 −Tσ S 2
	

or	

  κ 0 =κ e +Tσ S 2 	
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ECE	656	Homework	Solutions	(Week	9)		(continued)	
	
Use	numbers	from	problem	4)	
	

  κ e = 0.40  W-m/K 	

 σ = 1 ρ = 1 0.0019 = 526 S/cm = 5.26×104   S/m 	
S = −186 µV/K = -1.86 ×10−4  V/K 	

  
κ 0 =κ e +Tσ S 2 = 0.40+ 300×5.26×104 × 1.86×10−4( )2

= 0.40+ 0.55 	

 κ 0 = 0.95  W-m/K 	
	

  

κ 0

κ e

= 2.4
	

	
	
6)	 Using	the	results	of	prob.	4),	estimate	the	thermoelectric	material	FOM,	zT	for	n-type	

Ge	at	T	=	300	K.	You	may	assume	that	  κ L = 58 W/m-K .	
	
Solution:	

  κ e = 0.40  W-m/K 	

 σ = 1 ρ = 1 0.0019 = 526 S/cm = 5.26×104   S/m 	
S = −186 µV/K = -1.86 ×10−4  V/K 	

	

  
zT =

1.86×10−4( )2
5.24×104 × 300

0.40+58
= 0.01 		   zT = 0.01 	

	
We	need	  ZT ≈1	to	build	good	thermoelectric	devices,	so	Ge	is	not	a	good	
thermoelectric	material.	

	
	

7)	 This	problem	concerns	the	Peltier	coefficient	for	a	3D	semiconductor	with	parabolic	
energy	bands.		Assuming	that	the	MFP,	λ0 ,	is	independent	of	energy	and	show	that	the	
Peltier	coefficient	is:	

   
π3D = TS3D =

kBT
−q

⎛

⎝⎜
⎞

⎠⎟
2F 1 ηF( )
F 0 ηF( ) −ηF

⎛

⎝
⎜

⎞

⎠
⎟ .	
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ECE	656	Homework	Solutions	(Week	9)		(continued)	
	
Solution:	

Begin	with:	

  

π = − 1
q

E − EF( ) ′σ E( )dE
−∞

+∞

∫

′σ E( )dE∫
	

  
′σ E( ) = 2q2

h
λ E( ) M E( ) A( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟
	

  

π = − 1
q

E − EF( ) ′σ E( )dE
−∞

+∞

∫

′σ E( )dE∫
= − 1

q

E − EF( ) 2q2

h
λ E( ) M E( ) A( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE
−∞

+∞

∫
2q2

h
λ E( ) M E( ) A( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫
	

Cancel	out	constants:	

  

π = − 1
q

E − EF( ) E − EC( ) −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE
−∞

+∞

∫

E − EC( ) −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫
= − 1

q

E − EC + EC − EF( ) E − EC( ) −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE
−∞

+∞

∫

E − EC( ) −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫
	

Now	change	variables:		

 
η =

E − EC( )
kBT 	 	  

ηF =
EF − EC( )

kBT 	 	
 dE = kBTdη 	

	

  

π = −
kBT
q

η2 −ηFη( ) −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dη
−∞

+∞

∫

η −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dη∫
= −

kBT
q

η2 −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dη −ηF η −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dη
−∞

+∞

∫
−∞

+∞

∫

η −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dη∫

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

	

	

  

π = −
kBT
q

∂
∂ηF

η2 f0 dη
−∞

+∞

∫ −ηF
∂

∂ηF

η f0 dη
−∞

+∞

∫
∂

∂ηF

η f0 dη∫

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

	 	 (i)	

	
The	denominator	is:	

   
den = ∂

∂ηF

η f0 dη∫ = ∂
∂ηF

Γ 1( )F 1 ηF( ) =F 0 ηF( ) 	 	 (ii)	
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ECE	656	Homework	Solutions	(Week	9)		(continued)	
	
The	numerator	is:	

   
num = ∂

∂ηF

η2 f0 dη
−∞

+∞

∫ −ηF

∂
∂ηF

η f0 dη
−∞

+∞

∫ = ∂
∂ηF

Γ 3( )F 2 ηF( )−ηF

∂
∂ηF

Γ 2( )F 1 ηF( ) 	

   num = Γ 3( )F 1 ηF( )−ηFΓ 2( )F 0 ηF( ) 		 	 	 (iii)	
	
Now	use	(ii)	and	(iii)	in	(i)	to	find:	

   
π = −

kBT
q

Γ 3( )F 1 ηF( )−ηFΓ 2( )F 0 ηF( )
F 0 ηF( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= −

kBT
q

2F 1 ηF( )
F 0 ηF( ) −ηF

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	

   

π = −
kBT
q

2F 1 ηF( )
F 0 ηF( ) −ηF

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	

	
	

8)	 The	expression	for	the	short	circuit	(electronic)	thermal	conductivity	is:	

	
  
κ 0 =

E − EF( )2

q2T
′σ E( )dE

−∞

+∞

∫

	where	 ′σ E( ) ,	the	differential	conductivity,	is	given	by	

	
  
′σ E( ) = 2q2

h
λ E( ) M E( ) A( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟
.	

	
Evaluate	this	expression	assuming	that	the	Fermi	level	is	located	above	the	middle	of	
the	gap,	so	that	only	the	conduction	band	need	be	considered.		You	may	assume	that	
the	mean-free-path	for	backscattering	is	independent	of	energy,	  λ E( ) = λ0 ,	and	
parabolic	energy	bands	so	that	in	3D:	

   
M E( ) A = m*

2π2 E − EC( )H E − EC( ) ,		
where	 H E − EC( ) is	the	Heaviside	step	function.	
	
Your	answer	should	be	expressed	in	terms	of	Fermi-Dirac	integrals.	Your	final	answer	
should	be	an	expression	for	the	short-circuit	thermal	conductivity	of	3D	electrons	in	a	
semiconductor	with	parabolic	energy	bands	in	terms	of	the	normalized	Fermi	energy,	
ηF = EF − EC( ) kBTL .	
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ECE	656	Homework	Solutions	(Week	9)		(continued)	
	
Solution:	

	

  
κ 0 =

E − EF( )2

q2T
′σ E( )dE

−∞

+∞

∫
	

Substituting	in	for	the	differential	conductivity,	we	find:	

  
κ 0 =

E − EF( )2

q2T
2q2

h
λ0 M E( ) A( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE
−∞

+∞

∫ ,	

and	then	for	the	number	of	channels:	

   
κ 0 =

E − EF( )2

q2T
2q2

h
λ0

m*

2π2 E − EC( )⎛
⎝⎜

⎞
⎠⎟

−
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE
−∞

+∞

∫ .
	

Pull	the	constants	out	front:	

   
κ 0 =

1
q2T

2q2

h
⎛
⎝⎜

⎞
⎠⎟
λ0

m*

2π2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× E − EF( )2

E − EC( ) −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE
−∞

+∞

∫ .	 	 (i)	

Work	on	the	integral	first:	

   
κ 0 =

1
q2T

2q2

h
⎛

⎝⎜
⎞

⎠⎟
λ0

m*

2π2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× I 	 	 	 	 	 	 (ii)	

  
I = E − EF( )2

E − EC( ) −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE
−∞

+∞

∫ .	

Add	and	subtract,	 EC :	

  
I = E − EC + EC − EF( )2

E − EC( ) −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE
−∞

+∞

∫ .
	

Now	change	variables:			

 
η =

E − EC( )
kBT 	 	  

ηF =
EF − EC( )

kBT 	 	
 dE = kBTdη 	

  
I = kBT( )4

η −ηF( )2
η −

∂f0

∂E
⎛

⎝⎜
⎞

⎠⎟
dη

−∞

+∞

∫ 	

  
I = kBT( )4

η2 − 2ηFη +ηF
2( )η −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dη
−∞

+∞

∫ 	

  
I = kBT( )4

η3 −
∂f0

∂E
⎛

⎝⎜
⎞

⎠⎟
dη − 2ηF η2 −

∂f0

∂E
⎛

⎝⎜
⎞

⎠⎟
dη +ηF

2 η −
∂f0

∂E
⎛

⎝⎜
⎞

⎠⎟
dη

−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ 	
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I = kBT( )4 ∂

∂EF

η3 f0 dη − 2ηF

∂
∂EF

η2 f0 dη +ηF
2 ∂
∂EF

η f0 dη
−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	

  
I = kBT( )3 ∂

∂ηF

η3 f0 dη − 2ηF

∂
∂ηF

η2 f0 dη +ηF
2 ∂
∂ηF

η f0 dη
−∞

+∞

∫
−∞

+∞

∫
−∞

+∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
	

   
I = kBT( )3 ∂

∂ηF

Γ 4( )F 3 ηF( )− 2ηF

∂
∂ηF

Γ 3( )F 2 ηF( ) +ηF
2 ∂
∂ηF

Γ 2( )F 1 ηF( )⎡

⎣
⎢

⎤

⎦
⎥

	   
I = kBT( )3

6F 2 ηF( )− 4ηFF 1 ηF( ) +ηF
2F 0 ηF( )⎡⎣ ⎤⎦ .

	
Now	insert	this	result	in	(ii)	above	to	find:	

    
κ 0 =

1
q2T

2q2

h
⎛

⎝⎜
⎞

⎠⎟
λ0

m*

2π2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× kBT( )3

6F 2 ηF( )− 4ηFF 1 ηF( ) +ηF
2F 0 ηF( )⎡⎣ ⎤⎦

	
	

    

κ 0 = T
kB

q
⎛

⎝⎜
⎞

⎠⎟

2
2q2

h
⎛

⎝⎜
⎞

⎠⎟
λ0

m*kBT
2π2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× 6F 2 ηF( )− 4ηFF 1 ηF( ) +ηF

2F 0 ηF( ){ }
	

	
Please	see	the	Appendix	of	Near-Equilibrium	Transport:		Fundamentals	and	
Applications,	by	Lundstrom	and	Jeong,	for	a	list	transport	coefficients	worked	out	for	
1D,	2D,	and	3D	conductors.		This	is	eqn.	(A34).	
	
Additional	exercise	for	those	who	are	interested:	

Assume	that	the	mean-free-path	is	energy-dependent	according	to	

  
λ E( ) = λ0 E − EC( ) kBT⎡⎣ ⎤⎦

r
	.	

	
Work	out	the	analytical	expression	and	explain	physically	why	  r > 0 	
increases	the	magnitude	of	the	Seebeck	coefficient.	

	
	

9)	 An	appreciation	of	the	coupled	current	equations	is	necessary	when	experimentally	
characterizing	electronic	materials.		The	basic	equations	are:	

   
E x = ρJx + S

dT
dx

V/m 	 	 	 	 (i)	

  
JQx = π Jx − κ e +κ L( ) dT

dx
W/m2 	 	 	 (ii)	
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To	measure	the	resistivity	of	the	sample,	we	force	a	current,	 Jx ,	and	measure	the	
resulting	voltage.		In	the	first	case,	we	are	careful	to	maintain	isothermal	conditions,	
and	in	the	second	case,	we	are	careful	to	maintain	adiabatic	(zero	heat	current)	
conditions.		Answer	the	following	questions.	
9a)	 If	we	divide	the	measured	voltage	by	the	injected	current,	what	“isothermal	

resistivity”	do	we	measure.		(First	case.)	
9b)	 If	we	divide	the	measured	voltage	by	the	injected	current,	what	“adiabatic	

resistivity”	do	we	measure.		(Second	case.)	

9c)	 Using	numbers	for	lightly	doped	Ge	at	room	temperature:	

  ρn = 2 Ω-cm = 0.02  Ω-m 	

  Sn = −970 µV K 	
	

Solution:		9a)	
	

For	isothermal	conditions,	(i)	gives:	
	

   E x = ρJx V/m 	
	

   

E x

Jx

= ρ V/m
A m2 = ρ   Ω-m 	 	

   

E x

Jx dT /dx=0

= ρ   Ω-m 	

	
Solution:		9b)	
	

For	adiabatic	conditions,	(ii)	gives:	

  
JQx = π Jx − κ e +κ L( ) dT

dx
=0 	

  

dT
dx

= 
π Jx

κ e +κ L( ) 	
Insert	this	in	(i)	

   
E x = ρJx + S

dT
dx

= ρJx + S
π Jx

κ e +κ L( ) = ρ + Sπ
κ e +κ L( )

⎛

⎝
⎜

⎞

⎠
⎟ Jx = ρ 1+ Sπσ

κ e +κ L( )
⎛

⎝
⎜

⎞

⎠
⎟ Jx 	

   E x = ρ 1+ zT( ) Jx 	

   

E x

Jx JQ=0

= ρ 1+ zT( )   Ω-m
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So	we	measure	something	a	little	different	(much	different	if	we	are	measuring	a	good	
thermoelectric	material).	

	
Solution:		9c)	
	

Need	to	compute	zT	for	this	case:	

  
zT = S 2σT

κ L +κ e

		

Use	the	following	numbers:	

  ρn = 2 Ω-cm = 0.02  Ω-m 	

  Sn = −970 µV K 	

  κ e = 2.2×10−4 W m-K 	

  κ L = 58 W m-K >>κ n 	
	

  
zT = S 2σT

κ L +κ e

≈ S 2T
ρκ L

=
9.7 ×10−4( )2

300
0.02×58

= 2.4×10−3

	

   

E x

Jx JQ=0

= ρ 1+ zT( ) = 2 1+ 0.002( ) ≈ 2   Ω-cm 	

	
In	this	case	the	difference	is	very	small,	but	consider	what	would	happen	if	we	were	
measuring	a	good	thermoelectric	material,	such	as	Bi2Te3	with	  ZT ≈1.	

	

	

10)	 We	have	seen	a	lot	of	equations	so	far,	but	the	course	is	not	about	memorizing	
equations.		With	a	solid	understanding	of	the	physical	concepts,	only	a	few	equations	
are	needed.		On	one	sheet	(front	only,	font	size	12)	summarize	the	key	equations	
describing	near-equilibrium	transport.	The	point	is	not	to	write	down	every	equation,	
the	point	is	to	identify	the	few,	really	important	results	from	which	you	can	derive	
anything	else	you	need.	
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Solution:	

Landauer	expression:	
   
I = 2q

h
T E( )M E( ) f1 − f2( )dE∫ 	

Bulk	current	expression:	
 
Jnx =σ n

d Fn q( )
dx

− Snσ n

dT
dx

	

The	coupled	current	equations	in	inverted	form	(3D):	

  
E x = ρJx + S

dT
dx

	
 
JQx = π Jx − κ e +κ L( ) dT

dx
	

The	transport	coefficients	(3D):	

  
′σ E( ) = 2q2

h
λ E( ) M E( ) A( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟
	
  
σ = ′σ E( )dE

−∞

+∞

∫ = n0qµn 	

  

S = − 1
q

E − EF( ) ′σ E( )dE
−∞

+∞

∫

′σ E( )dE∫
= −

kB

q
⎛
⎝⎜

⎞
⎠⎟

EJ − EF

kBT
⎛

⎝⎜
⎞

⎠⎟
	  π = TS 	

   κ e =κ 0 −Tσ S 2 = TσL 		
  
κ 0 =

1
q2T

E − EF( )2
′σ E( )dE

−∞

+∞

∫ 	

Modes:	

  
M E( ) = h

4
υx

+ D E( ) 		 1D:		
 
υx

+ =υ 	 	 2D:		
  
υx

+ = 2
π
υ 				 3D:		

  
υx

+ = υ
2
	

Transmission:	
 
T E( ) = λ E( )

λ E( ) + L 	 Diffusion	coefficient:	
  
Dn =

υx
+ λ

2
	

Power	law	scattering	for	mean-free-path:	 	
  
λ E( ) = λ0 E − EC( ) kBT⎡⎣ ⎤⎦

r
		

Material	figure	of	merit:	
  
zT =

S 2σ T
κ L +κ e

	

	

	


