Quiz ANSWERS Week 9 ECE 656: Electronic Conduction In Semiconductors Mark Lundstrom Purdue University, Fall 2017

1) What is the proper, near-equilibrium current equation when the temperature varies slowly with position?

a)
$$J_{nx} = \sigma_n \frac{d(F_n/q)}{dx}$$

b) $J_{nx} = \sigma_n \frac{d(F_n/q)}{dx} - S_n \frac{dT}{dx}$
c) $J_{nx} = \sigma_n \frac{d(F_n/q)}{dx} - S_n \sigma_n \frac{dT}{dx}$.
d) $J_{nx} = \sigma_n \frac{d(F_n/q)}{dx} - \pi_n \frac{dT}{dx}$.
e) $J_{nx} = \sigma_n \frac{d(F_n/q)}{dx} - \kappa_n \sigma_n \frac{dT}{dx}$.

- 2) What is the strongest factor that determines the magnitude of the Seebeck coefficient?a) The location of the Fermi level with respect to the band edge.
 - b) The shape of the density of states.
 - c) The energy dependence of the mean-free-path for backscattering.
 - d) The dimensionality of the semiconductor.
 - e) All of the above-listed factors are equally important.
- 3) What are the two, most general driving forces for current?
 - a) Gradients in the electrostatic potential and temperature.
 - b) Gradients in the carrier concentration and temperature.
 - c) Gradients in the electrochemical potential and temperature.
 - d) Gradients in the electrostatic potential and carrier concentration.
 - e) Gradients in the electron density and electrostatic potential.
- 4) For a non-degenerate, n-type semiconductor, the current typically flows at an energy,
 - Δ_n , above the bottom of the conduction band. What is a typical value for Δ_n ?
 - a) Much less than $k_{B}T$.
 - b) Much greater than $k_B T$.
 - c) On the order of $k_{\rm B}T$.
 - d) Approximately $E_F E_C$.
 - e) Approximately $E_C E_F$.

continued on next page

- 5) For a degenerate, n-type semiconductor, the current typically flows at an energy, Δ_n , above the bottom of the conduction band. What is a typical value for Δ_n ?
 - a) Much less than $k_{B}T$.
 - b) Much greater than $k_{_B}T$.
 - c) On the order of $k_{B}T$.
 - d) Approximately $E_F E_C$.
 - e) Approximately $E_C E_F$
- 6) What is the relation between the Peltier coefficient and the Seebeck coefficient called?
 - a) The Wiedemann-Franz law
 - b) The Lorenz relation
 - c) Mathiessen's rule
 - d) The Kelvin relation
 - e) Dulong and Petit law
- 7) What are the coefficients, κ_0 and κ_e ?
 - a) κ_0 is the thermal conductivity due to phonons and κ_e is the same quantity due to electrons.
 - b) κ_0 is the thermal conductivity due to electrons and κ_e is the same quantity due to phonons.
 - c) κ_0 is the open-circuit thermal conductivity due to electrons and κ_e is the shortcircuit thermal conductivity due to electrons.
 - d) κ_0 is the short-circuit thermal conductivity due to electrons and κ_e is the open-circuit thermal conductivity due to electrons.
 - e) κ_0 and κ_e two names for the same quantity, the thermal conductivity due to electrons.
- 8) When we write the current equation in this form: $J_{nx} = L_{11} \frac{d(F_n/q)}{dx} + L_{12} \frac{dT_L}{dx}$

what is the coefficient L_{12} called?

a) The Seebeck coefficient.

b) The Soret coefficient.

- c) The Peltier coefficient.
- d) The electronic thermal conductivity, κ_0 .
- e) The electronic thermal conductivity, κ_{e} .

continued on next page

9) When we write the current equation in this form: $\frac{d(F_n/q)}{dx} = L_{11}J_{nx} + L_{12}\frac{dT_L}{dx}$

what is the coefficient L_{12} called?

a) The Seebeck coefficient.

- b) The Soret coefficient.
- c) The Peltier coefficient.
- d) The electronic thermal conductivity, κ_0 .
- e) The electronic thermal conductivity, κ_{e} .
- 10) The current in an n-type conductor flows at an energy, Δ_n , above the bottom of the conduction band. What determines the value of Δ_n ?
 - a) The location of the Fermi level.
 - b) The shape of the bandstructure.
 - c) The energy dependence of the mean-free-path.
 - d) All of the above.
 - e) None of the above.
- 11) What is the "power factor"
 - a) *S*σ
 - **b)** $S^2 \sigma$
 - c) $S^2 \sigma T$
 - d) $\kappa_L + \kappa_e$
 - e) κ_0/κ_L
- 12) Where should the Fermi level be placed to maximize the power factor in an n-type semiconductor?
 - a) Well below the conduction band edge, E_C
 - b) Well above the conduction band edge, E_{c}
 - c) Very close to the conduction band edge, E_c
 - d) Very close to the valence band edge, E_{V}
 - e) Well below the valence band edge, E_{V}

continued on next page

- 13) Which of the following is true about the location of the Fermi level to maximize the power factor in an n-type semiconductor?
 - a) It is higher in 1D than in 2D and higher in 2D than in 3D.
 - b) It is lower in 1D than in 2D and lower in 2D than in 3D.
 - c) It is the same in 1D, 2D, and 3D.
 - d) It is the same in 1D and 2D, but higher in 3D.
 - e) It is the same in 2D and 3D, but lower in 1D.
- 14) The best thermoelectric materials all have one thing in common. What is it?
 - a) A very high mobility.
 - b) A very high conductivity.
 - c) A very high Seebeck coefficient.
 - d) A very low lattice thermal conductivity.
 - e) A very low Peltier coefficient.
- 15) For a general (possibly anisotropic) material, we write:

$$\mathcal{E}_{i} = \rho_{ij}J_{j} + S_{ij}\partial_{j}T$$

Assume that J_x is non-zero and all other components are zero and that the temperature is uniform. What is \mathcal{E}_y ?

a)
$$\mathcal{E}_{y} = \rho_{yy} J_{x}$$

b)
$$\mathcal{E}_{y} = \rho_{xy} J_{x}$$

c)
$$\mathcal{E}_{y} = \rho_{yx} J_{x}$$

d)
$$\mathcal{E}_{y} = \rho_{yy} J_{y}$$

e) $\mathcal{E}_{v} = \rho_{vx} J_{v}$.