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The modern solar cell

Chapin, Pearson, and Fuller, Bell Labs, 1954

http://www.bell-labs.com/org/physicalsciences/timeline/span10.html#
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Solar cells

A solar cell is a junction (usually a PN junction) with sunlight shining on it.

To understand how a solar cell works, we need to understand:

1) how a PN junction works (in the dark)
2) how light is absorbed in a semiconductor (without a PN junction)

3) what happens when we put the two together.
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Silicon energy bands
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Intrinsic N-type P-type
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Fermi level (electrochemical potential)
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Intrinsic semiconductor
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N-type semiconductor
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P-type semiconductor
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PN junction
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Electrostatic potential and electron energy

L=—qy
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TY

A positive potential lowers the energy of an electron.

Lundstrom 2019

12



PN junction: charge transfer
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Equilibrium PN junction E-band diagram
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“Reading” an E-band diagram

7

Lc (x) =Lc, - ql//(X)

L, (x) =Ly, - QW(X)
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Energy band diagrams

Kroemer’ s lemma of proven ignorance:

“If, in discussing a semiconductor problem, you cannot
draw an Energy Band Diagram, this shows that you
don’ t know what you are talking about.”

corollary:

“If you can draw one, but don’t, then your audience won't
know what you are talking about.”

Herbert Kroemer, Nobel Lecture, Dec. 8, 2000. 16
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PN junction in equilibrium
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Contact potentials

I A contact potential
develops to align the L,
Fermilevels ~  =7==77=77°

small workfunction large workfunction
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Built-in potential
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Minority carriers

noy =N, Nyp = n?/N minority carrier

electrons
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Injection across a barrier
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PN junction in equilibrium

qV, If we apply a +
E.(x) ' voltage to the
P-side, what
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Where does the voltage drop?

N-side  Tanstion p e
region
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Forward bias

A forward bias lowers the energy barrier

from the N to P region. l
7 AE =gV, >0
/
av,-v,) )
E.(x)
N-side P-side
| > X
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Quasi-Fermi Levels (QFL’s)

nyy = N /Tq(vm VD)
e /f

QFL for QFL for
electrons holes

F,—F,= qV
Note: F (x) and F(x)

defined everywhere
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Fermi level vs. Quasi-Fermi Level

Equilibrium
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Minority carrier injection
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P — e_q(vbi_VD )/kgT

P — POeCIVD/kBT

“excess minority
carriers”
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Excess carriers and current

Excess electron
concentration on the p-side.
@ O An ) P

//\T (Vo =V,) qun )dx C/cm’
/

Ny

The time, £ is the average time for an electron on the p-side
to “recombine” or to diffuse to the contact and recombine.

Recombination leads to current.

30
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Recombination leads to current

minority carriers injected across junction ® at contacts too!

Every time a minority electron recombines on the
p-side, one electron flows in the external current.
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Forward bias summary

qVD/kBT .
1) Injected current produces a

population of “excess”
electrons in the P-type

/]j V- VD region...
2) Excess electrons in the P-

type region recombine...

nO FP
3) Every time an electron and
hole recombine, an
electron flows in the
Pozv external circuit.

I, :qR(VD)
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|deal diode equation
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the N-side and recombine
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I, = 10 (quD/kBT _ 1)

“ideal diode equation”

ID _ Io ( quD/nkBT . 1)

n=1
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Absorption of light
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Solar spectrum (terrestrial)
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How many photons can be absorbed?

Example: SiE; = 1.1eV. Only photons with a wavelength shorter
than 1.13 um will be absorbed.
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Wasted energy for E > E;

Energy is lost for photons with energy greater than E_.

hf >E, ————>
b5 R
Electron is excited above However, extra energy is lost due to
the conduction band. thermalization as electron relaxes

back to the band edge.
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How many photons are absorbed in a finite thickness?

Incident flux: ®, cm™s”

Flux at position, X : @(x)=® e
Optical absorption coefficient: «(1)>0 (E>E;)

Generation rate at position, x :
~ d(I)(x)

G(x)= =®,0(A) ¢

GTOTJ{IGx(x,/I)dx}dA [ o(A) em” ]
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Maximizing light absorption / generation

1) Maximize the number of // \ |
phonons that get into the solar antire ﬂectioé (AR) coatin
cell (AR coating, texturizing). J

2) Maximize the “effective”
thickness of the absorber (light

trapping).
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Collection of e-h pairs

1) Light generates electron-hole pairs

[ E.

[N
\

E=hf >E,

E

/
‘I
O )

2) PN junction collects e-h
pairs

N-region collects the Fe

minority electrons

P-region collects the j

minority holes.
O
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Current = recombination - generation

1) minority carriers collected 2) majority
O carrier
/ removed
o/ Ballio

0

Every time a minority electron generated on the P-side
is collected by the N-side, one electron flows in the
external current. 43




Current collection

The generated carriers are only useful if they are
collected before they recombine.

Electron diffusion length:
Distance electrons travel before they recombine.

" P t<L =.D7T,
CGenerated e || EX (S
h i, ~1000 cm’/V-s
T, =50 us
0 t L ~700 um

For Si, we cannot make the absorbing layer thick enough to
absorb all of the above gap photons. 44



Diode current under illumination

1) PN junction collects e-h pairs 2) Current flows through load
I, <0

7
// >0
<

O

-—V,—+

Forward bias across PN

1, <0 junction develops.
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Net current

3) Forward bias reduces current 4) IV characteristic is a superposition

I,=1I,(e""" —1)-1,

dark current + photocurrent
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“Superposition”

Lior =1, -1,

I, <0

)

\ =1, (equ/kBT _ 1)

collection current due to
optical generation
(assumed to be bias
independent)

N\

recombination current

due to minority carrier

injection (assumed to

be the dark current.
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Short-circuit current

I,=1I,(e""™" —1)-1,

-1, <0

1, (for a good solar cell)
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Collection efficiency

Photo-generated carriers should diffuse But some may
to the junction and be collected. recombine in the
base.

“base”
(absorbing layer)

“emitter/ /

O And some may diffuse
e N\ to the contact and
CE = I recombine.
4Gror

50
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Open-circuit voltage
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Maximum power point

~N
_ Vot F

,r’ — POZH
P

in in

FF = fill factor
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Fill factor

P, =1V,=|1,(e"" -1)-1, v, C;L‘j” =0
D

The FF is determined by the diode characteristic and by
series and shunt resistances. FF = 0.75-0.85 for Si.

_ VOC/(kBT/C])
= 4.7 +Voc/(kBT/Q)

< 2% error for V,c/(ksT /q)>10

Martin A. Green, “Accuracy of analytical expressions for
solar cell fill factors,” Solar Cells, 7, 337-340, (1982-83)
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Solar cell efficiency

4 N
— Pout _ ISC VOCFF
"=k TR,
\_ J

It's not enough to have a high short-circuit current,
we also need a high open-circuit voltage.
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Concentration increases efficiency

I = XI n=-2>Xn’

in
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lsc and Vo vs. bandgap

A
483 nm
|
ISCNl/EG I(/l) ',l Eph=hf=%>EG
|l, 6000 K black body
|
!
|
P 2
EG
k. T Il
VOC — Bq ln( ISC) IO oc n12 oc e_EG/kBT VOC - EG
0
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lsc and V. vs. bandgap

There is an optimum
bandgap for the solar

spectrum 57
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Vocabulary

Short-circuit current
Collection efficiency
Open-circuit voltage
l5c-V o trade-off
Optimum bandgap

Fill factor

Maximum power point
Solar cell efficiency
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Solar cell summary

1) Light is absorbed and produces e-h pairs

2) Junctions separate e-h pairs and collect the carriers.

3) Current flow in external circuit produces a FB voltage and
the FB diode current reduces the total current.

4) Current is the difference between recombination and
generation

4) Power out is Ig-V o FF.

5) Efficiency is critical because it lowers cost.
Lundstrom 2019
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Next

How do we design a solar cell to maximize the
short-circuit current?

How do we design a solar cell to maximize the
open-circuit voltage?

How do we design a solar cell to preserve the fill
factor?

Lundstrom 2019
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