Purdue University, Spring 2019

Design of Silicon Solar Cells

Mark Lundstrom

Electrical and Computer Engineering Purdue University West Lafayette, Indiana USA lundstro at purdue dot edu

Objective

In this lecture, we will consider the optical and electrical design of a modern, high-efficiency, crystalline silicon solar cell.

The general principles discussed here are broadly applicable, but for thin-film, polycrystalline solar cells, there are some special considerations (which will be discussed later).

The PERL cell

"Passivated Emiitter Rear Locally diffused"

Martin Green Group, University of New South Wales Lundstrom 2019

Evolution of Si solar cells

Martin A. Green, "The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution," *Prog. In Photovoltaics: Research and Applications*, **17**, 183-189, 2009.

Outline

1) Introduction

2) Optical design

- 3) Principles of electrical design
- 4) Electrical design of the PERL cell
- 5) Series resistance
- 6) Discussion
- 7) Summary

Maximizing light absorption / generation

- Maximize the number of phonons that get into the solar cell (AR coating, texturizing).
- 2) Maximize the "effective" thickness of the absorber (light trapping).

Anti-reflection coatings

Dual-level AR coatings (DLAR)

https://www.pveducation.org/pvcdrom/design-of-silicon-cells/ double-layer-anti-reflection-coatings

Dual-level AR coatings (DLAR)

David D. Smith, et al., "Towards the practical limits of solar cells," *IEEE J. Photovoltaics*, **4**, 1465-1469, 2014.

Light absorption vs. semiconductor thickness

The direct bandgap of CIGS allows it to absorb light much faster than Silicon. A layer of silicon must be thousands of microns thick to absorb ~100% of the light, while CIGS need only be about 2 microns thick.

What determines alpha?

Current collection

Generated carriers are only useful if they are collected before they recombine.

Electron diffusion length: $L_n = \sqrt{D_n \tau_n}$

The absorbing layer must be **electrically thin**, $W_p << L_n$, and **optically thick**, $W_p >> 1/\alpha$ ¹²

Light trapping

reflection coating

Probability of escaping from top surface = $1/4n^2$ Lundstrom 2019 (~2%)

13

- Absorption enhanced by 4n² (Yablonovitch limit)
 E. Yablonovitch, "Statistical ray optics," *J. Opt. Soc. Am. A*, **72**, 899-907 (1982).
- Similar enhancements possible with patterned surfaces.
 P. Campbell, M.A. Green, "Light trapping properties of pyramidally textured surfaces," *J. Appl. Phys.* 62, 243-249 (1987).

PERL cell optical design

Outline

- 1) Introduction
- 2) Optical design

3) Principles of electrical design

- 4) Electrical design of the PERL cell
- 5) Series resistance
- 6) Discussion
- 7) Summary

The semiconductor equations

$$\nabla \bullet \vec{D} = \rho$$

$$\nabla \bullet (\vec{J}_n / -q) = (G - R)$$

$$\nabla \bullet (\vec{J}_p / q) = (G - R)$$

steady-state

3 coupled, nonlinear, second order PDE's for the 3 unknowns:

 $\psi(\vec{r}) \quad n(\vec{r}) \quad p(\vec{r})$

A continuity equation

Solar cells and recombination-generation

By integrating the continuity equations, we can relate the diode current to R and G. (see Appendix 1)

$$J_{D}(V_{D}) = q(R_{TOT}(V_{D}) - G_{TOT})$$
$$R_{TOT} = \int_{0}^{L} R(x) dx + R_{F} + R_{B}$$
$$R_{F} = |J_{px}(0)|$$
$$R_{B} = |J_{nx}(L)|$$
$$G_{TOT} = \int_{0}^{L} G_{op}(x) dx$$

- The goal is to maximize optical generation and minimize minority carrier recombination.
- Recombination lowers the short-circuit current (i.e. the collection efficiency) and reduces the open-circuit voltage.
- To optimize solar cell performance, we need a clear understanding where minority carriers are recombining.

Short-circuit current

Open-circuit voltage

Minority carrier profiles

$$R_{BC} = S_n \Delta n \left(W_p \right)$$

What are the minority carrier profiles in the quasi-neutral N and P regions?

$$\Delta p(x) = p(x) - p_0 \qquad \Delta n(x) = n(x) - p_0$$

MCDE

To answer this question, we must solve the minority carrier diffusion equation (MCDE), a simplification of the general continuity equation (see Appendix 2).

On the P-side:

$$\frac{d^2 \Delta n}{dx^2} = 0$$

$$\Delta n(x) = n(x) - p_0$$

 $W_p \ll L_n$

(assumes little recombination in the P-region)

Solution:

$$\Delta n(x) = Ax + B$$

FB N⁺P diode in the dark

Minority carrier electrons recombine in the **P-base** or at the **back contact**. (Same for holes in the N-emitter and front contact.)

25

FB N⁺P diode in the dark

Dark current components

Model NP solar cell

28

Minimizing the dark current

Back surface field (BSF)

 $S_n \approx v_{th}$ $\simeq 1 \times 10^7 \text{ cm/s}$

$$S_n \approx v_{th} e^{-\Delta E/k_B T}$$

<1×10⁷ cm/s

$$\Delta E = k_B T \ln\left(\frac{N_A^{++}}{N_A}\right)$$

$$S_n \approx v_{th} e^{-\Delta E/\kappa_B T}$$

 $\simeq 0.5 \times 10^7 \text{ cm/s}$

A T / 1 / T

30

Outline

- 1) Introduction
- 2) Optical design
- 3) Principles of electrical design
- 4) Electrical design of the PERL cell
- 5) Series resistance
- 6) Discussion
- 7) Summary

PERL cell electrical design

M. A. Green, *Prog. In Photovoltaics: Research and Applications*, **17**, 183-189, 2009.

Passivated Emiitter Rear Locally diffused

Martin Green Group, University of New South Wales

Typical PERL device parameters

$$N_D \approx 4 \times 10^{18} \text{ cm}^{-3}$$

Best PERL cell parameters

$$J_{sc} = 42.7 \text{ mA/cm}^2$$

 $V_{oc} = 706 \text{ mV}$
 $FF = 82.8 \%$
 $\eta = 25.0 \%$

 $J_{\rm max} = 44.8 \,\mathrm{mA/cm^2}$

$$J_{SC}/J_{max} = 95.3\%$$

(3.5% shadowing, + reflection/ absorption, ~100% CE)

$$qV_{OC} = E_G - 0.4 \text{ eV}$$

Martin A. Green, "The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution," *Prog. In Photovoltaics: Research and Applications*, **17**, 183-189, 2009.

PERL: Dark current components

Zhou, et al., *Solar Energy Materials* and *Solar Cells*, **41/42**,87-99, 1996.

$$J_D = J_0 \left(e^{qV_D/k_B T} - 1 \right)$$

$$J_0 = 50 \text{ fA/cm}^2$$

$$J_{0} = \left[J_{0n} \left(\mathbf{p} - \mathbf{Si} \right) + J_{0n} \left(\mathbf{b} - \mathbf{c} \right) \right] + \left[J_{0p} \left(\mathbf{n} - \mathbf{Si} \right) + J_{0p} \left(\mathbf{f} - \mathbf{c} \right) \right]$$

 $J_{0p}(n-Si) + J_{0p}(f-c) = 15 \text{ fA/cm}^2$

Martin A. Green, "The Passivated Emitter and Rear Cell (PERC): From Conception to mass production," *Solar Energy Materials and Solar Cells,* **143**, 190-197, 2015.

Outline

- 1) Introduction
- 2) Optical design
- 3) Principles of electrical design
- 4) Electrical design of the PERL cell
- 5) Series resistance
- 6) Discussion
- 7) Summary

2D effects

Series resistance

Effect on dark and illuminated IV

Fill Factor is reduced Larger V_D to reach the same current $R_{\rm s} \approx 0.5 \,\Omega \text{-cm}^2 \text{ PERL}$ 40

Outline

- 1) Introduction
- 2) Optical design
- 3) Principles of electrical design
- 4) Electrical design of the PERL cell
- 5) Series resistance
- 6) Discussion
- 7) Summary

Limits

The solar spectrum and bandgap set the upper limit for the short-circuit current.

What sets the limit for the open-circuit voltage?

 $V_{OC} < E_G / q$

Why?

Voc and QFLs

What determines
$$F_n - F_p$$
?

$$np = n_i^2 e^{\left(F_n - F_p\right)/k_B T}$$

$$\Delta n N_A = n_i^2 e^{\left(F_n - F_p\right)/k_B T}$$

$$\left(F_n - F_p\right) = \frac{k_B T}{q} \ln\left(\frac{\Delta n}{n_{p0}}\right)$$

$$\left(F_n - F_p\right) = \frac{k_B T}{q} \ln \frac{\Delta n}{\left(n_i^2 / N_A\right)} = \frac{k_B T}{q} \ln \frac{\Delta n}{n_{p0}}$$

What determines Δn ?

$$R(V_{OC}) = G_{TOT} \approx J_{SC}/q$$

$$R(V_{OC}) = \frac{\Delta n(V_{OC})W_p}{t_n}$$

$$\Delta n(V_{OC}) = \frac{(J_{SC}/q)}{W_p} t_n$$

$$R(V_{OC}) = G_{TOT} \to \Delta n(V_{OC})$$

Higher lifetime gives higher Δn , which give more QFL splitting and a higher V_{OC}

What determines the lifetime?

In practice

- Defects at the surfaces
- Contacts
- Defects in the p-bulk
- Defects in the n-bulk

Fundamental

Band-to-band radiative recombination (Shockley-Queisser)

But for Si, Auger recombination

V_{OC} and bandgap

$$qV_{OC} = \left(F_n - F_p\right)$$
$$\left(F_n - F_p\right) = \frac{k_B T}{q} \ln\left(\frac{\Delta n}{n_{p0}}\right)$$
$$\Delta n \left(V_{OC}\right) = \frac{\left(J_{SC}/q\right)}{W_p} t_n$$
$$n_{p0} = n_i^2 / N_A$$
$$n_{p1}^2 = N_C N_V e^{-E_G/k_B T}$$

$$V_{OC} = E_G - \frac{k_B T}{q} \ln \left(\frac{W_p N_C N_V / N_A}{(J_{SC} / q) t_n} \right)$$

$$V_{OC} = E_G - (0.3 - 0.4) \text{eV}$$

Estimating the efficiency of a solar cell

1) Maximum J_{SC} from the bandgap

2)
$$V_{oc} = \frac{E_G}{q} - (0.3 - 0.4)$$

3) FF assuming low series resistance: F

$$FF \approx \frac{V_{OC}/(k_BT/q)}{4.7 + V_{OC}/(k_BT/q)}$$

4) Efficiency
$$\eta = \frac{J_{SC}V_{OC}FF}{P_{in}}$$

Outline

- 1) Introduction
- 2) Optical design
- 3) Principles of electrical design
- 4) Electrical design of the PERL cell
- 5) Series resistance
- 6) Discussion
- 7) Summary

Summary

- Optical design should ensure that all phonons with energies above the bandgap are absorbed. For indirect gap semiconductors, light-trapping makes physically thin layers optically thick.
- 2) Recombination must be minimized to maximize the collection efficiency (J_{SC}) and open-circuit voltage (V_{OC}).
- 3) Series resistance lowers the fill factor (FF).
- The short-circuit current can be close to the maximum possible, but the open-circuit voltage is still significantly less than the bandgap.

Questions

- 1) Introduction
- 2) Optical design
- 3) Principles of electrical design
- 4) Electrical design of the PERL cell
- 5) Series resistance
- 6) Discussion
- 7) Summary

