Theory and Practice of Solar Cells: A Cell to System Perspective

Reliability of Solar Cells: Part I

M. A. Alam

alam@purdue.edu Electrical and Computer Engineering Purdue University West Lafayette, IN USA

PV Reliability: A ROI Challenge

Alam, JPV, 2016

M. A. Alam, PV Lecture Notes

Solar cell exposed to variety of weather conditions

M. A. Alam, PV Lecture Notes

PV Field Failures Are Mounting

Fully assembled solar module

M. A. Alam, PV Lecture Notes

M. A. Alam, PV Lecture Notes

Outline

- 1) Background: Why does reliability matter
- 2) Three classes of reliability issues
 - Reversible (Shadow, Soiling)
 - Metastable (PID, LID)
 - Permanent (Yellowing, corrosion, cracking)
- 3) Forward and inverse reliability prediction
- 4) Conclusions

A Shadow is Dangerous

- simulation captures the temperature map of a shaded panel
- Pre-existing shunt causes local hot spots
- Self-heating due to shading leads to new shunt defects

Modules have cells connected in series

Si module

Thin-film module

M. A. Alam, PV Lecture Notes

I-V Characteristics of a module: Graphical representation

M. A. Alam, PV Lecture Notes

One cell under full shadow

M. A. Alam, PV Lecture Notes

Full shadow degradation

M. A. Alam, PV Lecture Notes

Solution strategy: bypass-diode

Little diode carrying a lot of current, may itself fail

$$P_{out} = V_{op} \times I_{ph} = I_{ph}(V_{mp}(N-1) - V_{bi})$$

Monolithic thin-film solar module

Electroluminescence Images

- Typical module architecture for thin film (CIGS, CdTe, etc.)
- Only **ONE** external bypass diode for one module (~100 cells)
- Bypass diodes can NOT prevent partial-shading induced gradation

Shapes and sizes of shadow

Shadow degradation

Solution strategy: Geometry

M. A. Alam, PV Lecture Notes

Solution strategies

May lead to runaway process.

Solutions:

- Device: Characterized and qualified
- Circuits: Overvoltage Protection diode
- Systems: Redundant SRAM-like array

O. Breitenstein, et al., PSS, 2009

D. Nguyen, et al., APEC, 2008

Outline

- 1) Background: Why does reliability matter
- 2) Three classes of reliability issues
 - Reversible (soiling, Shadow)
 - Metastable (PID, LID)
 - Permanent (Yellowing, corrosion, cracking)
- 4) Conclusions

PID Degradation

M. A. Alam, PV Lecture Notes

M. A. Alam, PV Lecture Notes

Variety of PID leakage paths

M. A. Alam, PV Lecture Notes

A Model for PID Degradation

An aluminum tape covers the front surface

The tape makes the field inside the structure uniform and hence one dimensional transport simulation is done.

Potential and Drift-Diffusion Geometry

Transport Boundary Condition: Left side: Constant $10^{20} / m^3$ Right side: Reflective Boundary

EVA $D \sim 10^{-14} \frac{m^2}{s}$

M. A. Alam, PV Lecture Notes

Linear Response: Low Na glass

$$Q_p(=qp_0L_p)$$

$$J_{Na} = Q_p/t_p = qp_0\mu_pV_p/L_p$$

$$\mu_p = \mu_0^* e^{-E_A/k_BT}$$

$$\mu_0^* = \mu_0[RH\%]^B$$

$$R_D \propto J_{Na} = A e^{-E_A/k_BT}[RH\%]^BV_p$$

$$A \equiv qp_0\mu_0/L_p$$

Types of PID degradation

Conclusions

- Solar cells must survive the weather outside for 25-40 years. Reliability is a key concern and a very important research topic.
- 2. The power loss may be reversible or irreversible. Many of the irreversible reliability issues arise from how the cells are series-connected to form a module and how modules are series-connected to form a string.
- 3. Shadow degradation and potential induced degradation are two very important reliability issues of a PV system. A set of solution methodologies have been developed to address these concerns.
- 4. We will discuss other reliability fundamental reliability issues, such as corrosion, and UV-degradation in the next lecture.

Self-assessment Quiz

- I. How does reliability affect the cost of electricity?
- 2. A partial shadow is more dangerous than a complete shadow. Explain.
- 3. Explain three different ways the effects of partial shadowing can be minimized.
- 4. Is partial shadow degradation reversible or irreversible?
- 5. Name the ion responsible for PID degradation.
- 6. Name two types of PID degradations discussed in this tutorial.
- 7. Explain why n+-p vs. p+-n have very different PID degradation. How does this polarity dependence implicate Na transport in creating PID?
- 8. Suggest two methods to suppress PID.