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A magnificent multiscale problem:
Atom-to-farm perspective
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Wait, Wait don’t tell me

What fraction of the total energy comes
from PV sources

a)10 b)30 ¢)50 d) 80

Shares of total U.S. energy consumption by major sources
in selected years (1776-2017)
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Source: U S, Energy Information Administration, Monthly Energy Review, o
Appendix D.1, and Tables 1.1 and 10.1, May 2018, preliminary data for 2017 (.‘.ié\
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What is the energy density in AMO (in W/m?2)

a) 2000 b) 1350

1350

c) 800  d) 500
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What is the temperature of the sun (in K)

a)300 b) 1000 c) 3000 d) 6000



What is the average photon energy in sunlight

a) 025 b)0.50 ¢) 1.10 d) I.35
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A c-Si solar cell

(a) Obeys superposition principle

(b) Has the highest market share

(c) Has low absorption at longer
wavelengths

(d) Typically comes in n+-p variety

(e) All of the above
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What does SiN layer do

(a) Makes the cell look nicer
(b) Increases fill factor

(c) Reduces reflection loss
(d) None of the above
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A PERC cell involves

(a) A uniform back-surface fielc

(b) a-Si front and back-contact passivation

(c) Passivation by SiO2/SiN with selective
opening for contact

(d) Ability to accept light from both surfaces
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A SiN in a ¢-Si solar cell is used to

(a) Increase light trapping

(b) Improve electron collection

(c) Improve light coupling into the cell
and reduce reflection

(d) None of the above
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Typical thickness of thin-film solar cell (in micron)

2)500 b)300 ¢)05 d) 0.0l
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Which type of super-position does c-Si satisfy
(Cl) I(SO' V) = Iph (SO' V) - Idark (V' I)
(b) I(SOJ V) = Iph (SO:V)_ Idark (V: Iph — 0)

(c) 1(Sp, V) = Iph (So,V = 0)= Igark (V»]ph — O)
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A shunt resistance is

(a) Voltage-symmetric

(b) Temperature insensitive
(c) Statistically distributed
(d) All of the above

0
Voltage (V)

17



Gridding is used to

(a) Make the cell beautiful

(b) Reduce shunt resistance loss

(c) Decrease series-resistance
loss

(d) Increase short-circuit current
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PID occurs in only in

(a) Small rooftop system

(b) Thin-film solar cells

(c) Ungrounded solar farms

(d) Large farm with grounded frame
(e) p+-n c-Si solar cells

GND
s - W
| =
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Dark corrosion

(a) Occurs night and day
(b) Involves acetic acid
(c) Does not depend on voltage

(d) All of the above
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In a pristine module, the busbar has

(a) The highest voltage
(b) The lowest voltage
(c) Depends on the busbar location
(d) Cannot be determined
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TC test involves the following

(a) Moisture

(b) Light

(c) Voltage

(d) Temperature
(e) All of the above

TC: -40 to 85C(10min), 200-600 cycles (Delamination)
DH: 0 to 85%RH/65-85C, 1000hrs (Corrosion, Leak)
H-F: -40C to 85C @85RH, 10 cycles (Stress/corrosion)
UV: 0 to 25kWh/m?,4-5 cycles (Yellowing)

Load: O to 2.4/5.6 kPa,-40C, 2-5 cycles (Wind/Snow)
LID: 60 kWh/m?, 1-10 cycles (EVA, Cells)
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C-AST tries to achieve following goal

(a) Mimic environmental usage condition
(b) Create a new acronym to confuse people
(c) Calculate the time-dependent yield

(a) PID
(d) Accurately predict lifetime N
i _,|Damp Heat| !
| With Bias | !
(e) AII Of the above =T E 5 Interim Tests ;
[ 1
Ref PID uv Load Energy E N<5
k J i PID Recovery i
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Caffeine improves Perovskite PV efficiency
and stability

https://doi.org/10.1016/j.joule.2019.04.005
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https://www.cell.com/joule/fulltext/S2542-4351(19)30173-4#secsectitle0010
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What is the Zenith angle on the shortest day
of the year

(a) L

(b) L+23

(c) L-23

(d) L-10

(e) 0.7L + 3.6
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he cross-string method is used to calculate

(a) Direct light contribution
(b) Diffused light contribution
(c) Albedo light contribution
(d) Clearness index
(e) None of the above
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A flat solar farm is preferred when

(a) Module cost is high relative to land cost
(b) Module cost is low relative to land cost
(c) When diffused light component is high
(d) If diffused light component is low

(e) None of the above
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H2 generation by solar cell is most efficienct
when a single EC cell is coupled to the
following number of PV cells

a) 1 b)2 )4 d)8

nooy (b)

1 2 3 4
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LCOE accounts for the following factor that
COE does not

a) Bank discount rate
b) Degradation rate
c) Energy yield

d) Cleaning cost
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What is the name of the law that expresses
the decrease in manufacturing cost with
manufacturing volume

a) Moore’s law

b) Nernst law

c) Swanson law

d) None of the above
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Wait, Wait don’t tell me ...

You buy a 20% module and install it as a fixed
tilt system. The effective efficiency is

a) 33%
b) 20% * (2/pi)
) 20%
d) 20% * (pi/2)




nanohub.org/resources/pvlimits

http://arxiv.org/abs/1606.01 176
ssesetane s

Juncion Typa:ISingIs Junction

— Single (SJ) or multi-junction (MJ)
—»> SJ: J-V or Eg-sweep
—p MJ: J-V or N-sweep

Simulation specific input

Single Junction Opfions: | J-V 1—
| HT
Eg: [1.3ev
v min: [ov
W max = Eg

V increment: (0,001

Binding energy of exciton: |0eY

Discontinuity at conduction band: |l]e\|"

These set of inputs change based on
the choice of simulation setup

Sun Temperature: (,:lﬁT?BK

Spectral input

Device Temperature: @m0 300K

Solar Spectium: | AM1.5G

l

Solar concenfration factor: |l

Device angle rectriction factor: |1

— Input spectrum: AM1.5G or ideal Blackbody
I Distance from sun (for Blackbody input)
—p> Spectral low-pass filter (for MJ calculations)
L Reflectance of the ground (for MJ calc.)

1-sun

@:l-Sun

Direct sunlight ‘ ‘ ‘ . E!*

®-e
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Maximum |sc (in mA/cm2) from AMI.5
spectrum is

a) 7000 b)700 ¢)70 d) 7

%

11111
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Maximum |sc for Eg=1.7 eV perovskite
under AMI.5 illumination is

) 100 b)50 ¢)20 d)5
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For a 3-junction tandem, maximum
Jsc in mA/cm?2 is

) 100 b)70 ¢) 17 d) 4

ijsc

Vmp
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If Eg=1eV, maximum 1}, is

a) 1.0 b)0.65 c)0.45 d)0.25
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In a N=3 tandem,
El=1.9eV,E3=0.97,
what is E2?

a)2.5 b)l.6 ¢ I.3
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In a N=3 tandem,What is Vmp!

a4 b)3 o2 d)l
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A world-wide grid for a global need

’ Ucean
CUIents
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Demand Supply
W =7.7x10° A =510 x 1012 m?
P=25x103W P =103 W/m? n = 0.1 (Technology)
Pr~2TW Py ~0.5TW (ifAp ~ 10~° Indiana to USA)
Smart heating, Smart transportation Do we need a world-wide grid ?
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Conclusions

A fantastic multi-scale problem; a system-perspective
is essential to have an impact and make a difference

A technology that of great significance for humanity

An technology that offers many opportunities for
Innovation

Reliability is fundamental; so is cost

43



How hot a module can get, if the

cells are 20%-efficient ?
(h=10 W/m2/K)

a) 500C b) 100C c) 40C, d) 10C
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A Little Formula Sheet

S cell Jses; =Jo(1—BE,) (AML15, ], = 83.75,8 = 0.428).
qVoc,s7 = 0.95 X Eg — 0.232
opt
qup,S] = 0.95 X Eg — 0.31 Eg,S] = 2.55 kT

FF ~(Wy. /v, + 4.7)
Nrs; = —26.45E5 +70.77E;, — 1442 (AML.5, empirical)

Tandem ]SC(N) = Niﬂjsc«Eg»

_ Tp Egmax Op
qup/N — (Eg> (1 - (Eg) TS )— kB TD lne_s
= _N—l +,3(1+R)EO—R

gmax. — BN B x N

Module (T-T)=P/h=1000(1—-n—R)/h
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