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Lecture 1 

The Bottom-up Approach 

“Everyone” has a computer these days, and each computer has more than 

a billion transistors, making transistors more numerous than anything 

else we could think of. Even the proverbial ants, I am told, have been 

vastly outnumbered. 

 

There are many types of transistors, but the most common one in use 

today is the Field Effect Transistor (FET), which is essentially a resistor 

consisting of a “channel” with two large contacts called the “source” and 

the “drain” (Fig. 1.1a). 

 

 

 
 

 

 

 

 

Fig.1.1a. 

The Field Effect Transistor (FET) is essentially a resistor consisting of a “channel” with 

two large contacts called the “source” and the “drain”, across which we attach the two 

terminals of a battery. 

 

 

The resistance R = Voltage (V) / Current (I) can be switched by several 

orders of magnitude through the voltage VG applied to a third terminal 

called the “gate” (Fig.1.1b) typically from an “OFF” state of ~100 

megohms to an “ON” state of ~10 kilohms. 
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Fig.1.1b. 

The resistance R = V/I can be changed by several orders of magnitude through the gate 

voltage VG. 

 

Actually, the microelectronics industry uses a complementary pair of 

transistors such that when one changes from 100M to 10K, the other 

changes from 10K to 100M. Together they form an inverter whose 

output is the "inverse" of the input: A low input voltage creates a high 

output voltage while a high input voltage creates a low output voltage as 

shown in Fig.1.2. 

 

A billion such switches switching at GHz speeds (that is, once every 

nanosecond) enable a computer to perform all the amazing feats that we 

have come to take for granted. Twenty years ago computers were far less 

powerful, because there were “only” a million of them, switching at a 

slower rate as well. 

 

 

 

 

 
 

 

 

 

 

 

 

Fig.1.2.  

A complementary pair of FET’s form an inverter switch. 
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Both the increasing number and the speed of transistors are consequences 

of their ever-shrinking size and it is this continuing miniaturization that 

has driven the industry from the first four-function calculators of the 

1970’s to the modern laptops. For example, if each transistor takes up a 

space of say 10 µm x 10 µm, then we could fit 3000 x 3000 = 9 million 

of them into a chip of size 3cm x 3cm, since 

 

  

 

That is where things stood back in the ancient 1990’s. But now that a 

transistor takes up an area of ~ 1 µm
2
, we can fit 900 million (nearly a 

billion) of them into the same 3cm x 3cm chip. Where things will go 

from here remains unclear, since there are major roadblocks to continued 

miniaturization, the most obvious of which is the difficulty of dissipating 

the heat that is generated. Any laptop user knows how hot it gets when it 

is working hard, and it seems difficult to increase the number of switches 

and/or their speed too much further. 

 

These Lectures, however, are not about the amazing feats of 

microelectronics or where the field might be headed. They are about a 

less-appreciated by-product of the microelectronics revolution, namely 

the deeper understanding of current flow, energy exchange and device 

operation that it has enabled, based on which we 

have proposed what we call the bottom-up 

approach. Let me explain what we mean. 

 

According to Ohm's law, the resistance R is 

related to the cross-sectional area A and the length 

L by the relation 

 
R ≡

V

I
=

ρL

A
 (1.1a) 

ρ  being a geometry-independent property of the material that the 

channel is made of. 

 

3 cm /10 µm = 3000
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The reciprocal of the resistance is the conductance 

 

I

V
=

σ A

L   (1.1b) 

which is written in terms of the reciprocal of the resistivity called the 

conductivity. 

 

Our conventional view of electronic motion through a solid is that it is 

"diffusive," which means that the electron takes a random walk from the 

source to the drain, traveling in one direction for some length of time 

before getting scattered into some random direction as sketched in 

Fig.1.3. The mean free path, λ  that an electron travels before getting 

scattered is typically less than a micrometer (also called a micron = 10
-3

 

mm, denoted µm) in common semiconductors, but it varies widely with 

temperature and from one material to another. 

 

 

 

 
 
 
Fig.1.3. 

The length of the channel of an FET has 

progressively shrunk with every new 

generation of devices (“Moore’s Law”) and 

stands today (2010) at  ~ 50 nm, which 

amounts to a few hundred atoms! 
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It seems reasonable to ask what would happen if a resistor is shorter than 

a mean free path so that an electron travels ballistically ("like a bullet") 

through the channel. Would the resistance still obey Ohm's law? Would 

it still make sense to talk about its resistance? These questions have 

intrigued scientists for a long time, but even twenty five years ago one 

could only speculate about the answers. Today the answers are quite 

clear and experimentally well established. Even the transistors in 

commercial laptops now have channel lengths L ~ 50 nm, corresponding 

to a few hundred atoms in length! And in research laboratories people 

have even measured the resistance of a hydrogen molecule. 

It is now clearly established that the resistance of a ballistic conductor 

can be written in the form 

 

 

RB =
h

q
2

~ 25 KΩ

��

1

M
 (1.2) 

where h/q
2
 is a fundamental constant and M represents the number of 

effective channels available for conduction. Note that here we are using 

the word “channel” not to denote the physical channel in Fig.1.3, but in 

the sense of parallel paths whose meaning will be clarified in the next 

few lectures. In future we will refer to M as the number of “modes”. 

 

This result is now fairly well-known, but the common belief is that it 

applies only to short conductors and belongs in a course on special topics 

like mesoscopic physics or nanoelectronics. What is not as well-known is 

that the resistance for both long and short conductors can be written in 

the form ( λ : mean free path) 

 

 

R =
h

q
2
M

R
B

� ���

1+
L

λ







 (1.3) 
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Ballistic and diffusive conductors are not two different worlds, but rather 

a continuum as the length L is increased. For L << λ , Eq.(1.3) reduces 

to the ballistic result in Eq.(1.2), while for L >> λ , it morphs into Ohm’s 

law in Eq.(1.1). Indeed we could rewrite Eq.(1.3) in the form 

 R =
ρ

A
L + λ( )  (1.4) 

with a new expression 

 ρ =
h

q
2

A

Mλ
 (1.5) 

that provides a different view of resistivity in terms of the number of 

modes per unit area and the mean free path. 

 

This is the result we will try to establish in the first few lectures and it 

illustrates the essence of our bottom-up approach, viewing short 

conductors not as an aberration but as the starting point to understanding 

long conductors. For historical reasons, the subject of conduction is 

always approached top-down, from large complicated conductors down 

to hydrogen molecules. As long as there was no experimental evidence 

for what the resistance of a small conductor might be, it made good sense 

to start from large conductors where the answers were clear. But now 

that the answers are clear at both ends, a bottom-up view seems called 

for, at least to complement the top-down view. After all that is how we 

learn most things, from the simple to the complex: quantum mechanics, 

for example, starts with the hydrogen atom, not with bulk solids. 

 

But there is a deeper reason why the bottom-up approach can be 

particularly useful in transport theory and this is the “new perspective” 

we are seeking to convey in these lectures. One of the major conceptual 

issues posed by the ballistic resistance RB in Eq.(1.2), is the question of 

“where is the heat”. Current flow through any resistance R leads to the 

generation of an amount of heat VI = I
2
R, commonly known as Joule 

heating. A ballistic resistance RB too must generate a heat of I
2
RB. 
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But how can a ballistic resistor generate heat? Heat generation requires 

interactions whereby energetic electrons give up their excess energy to 

the surrounding atoms. A conductor through which electrons zip through 

without exchanging energy cannot possibly be generating any heat. It is 

now generally accepted that in such a resistor, all the Joule heat would be 

dissipated in the contacts as sketched in Fig.1.4. There is experimental 

evidence that real nanoscale conductors do approach this ideal and a 

significant fraction of the Joule heat is generated in the contacts. 

 

 

 
Fig.1.4. The ideal elastic resistor 

with the Joule heat VI = I2R generated 

entirely in the contacts as sketched. 

Many nanoscale conductors are 

believed to be close to this ideal. 

 

 

 

In a sense this seems obvious as my colleague Ashraf often points out. 

After all a bullet dissipates most of its energy to the object it hits, rather 

than to the medium it flies through. And yet in the present context, this 

does seem like a somewhat counter-intuitive result. Clearly the flow of 

electrons and hence the resistance is determined by the area of the 

narrow channel that electrons have to squeeze through and not by the 

large area contacts. But the associated Joule heat occurs in the contacts. 

And this would be true even if the channel were full of “potholes” that 

scattered the electrons, as long as the interaction with the electrons is 

purely elastic, that is does not involve any transfer of energy, 

 

The point we wish to make, however, is that flow or transport always 

involves two fundamentally different types of processes, namely elastic 

transfer and heat generation, belonging to two distinct branches of 

physics. The first involves frictionless mechanics of the type described 

by Newton's laws or the Schrödinger equation. The second involves the 

generation of heat described by the laws of thermodynamics. The first is 

driven by forces or potentials and is reversible. The second is driven by 
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entropy and is irreversible. Viewed in reverse, such processes look 

absurd, like heat flowing spontaneously from a cold to a hot surface or an 

electron accelerating spontaneously by absorbing heat from its 

surroundings.  

 

Normally the two processes are intertwined and a proper description of 

current flow in electronic devices requires the advanced methods of non-

equilibrium statistical mechanics that integrate mechanics with 

thermodynamics. Over a century ago Boltzmann taught us how to 

combine Newtonian mechanics with heat generating or entropy-driven 

processes 

 

 

 

 

and the resulting Boltzmann transport equation (BTE) is widely accepted 

as the cornerstone of semiclassical transport theory. The word 

semiclassical is used because some quantum effects have also been 

incorporated approximately into the same framework. 

 

A full treatment of quantum transport requires a formal integration of 

quantum dynamics described by the Schrödinger equation with heat 

generating processes. This is exactly what is achieved in the non-

equilibrium Green function (NEGF) method 

 

 

 

 

originating in the 1960’s from the seminal works of Martin and 

Schwinger (1959), Kadanoff and Baym (1962), Keldysh (1965) and 

others (see Lecture 19). 

 

The BTE takes many semesters to master and the full NEGF formalism, 

even longer. Much of this complexity, however, comes from the 

difficulty of combining mechanics with distributed heat-generating 
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processes which are a key part of the physics of resistance in long 

conductors. 

 
 

 

 

 

 

 

Fig.1.5. Resistance in long conductors primarily arise from distributed heat generating 

processes along the channel. Prior to 1990, papers dealing with basic transport theory 

seldom considered the actual physical contacts. 

 

 

The modern developments in mesoscopic physics and nanoelectronics 

give us a different perspective, with the elastic resistor in Fig.1.4 as the 

starting point. The operation of the elastic resistor can be understood in 

far more elementary terms because of the clean spatial separation 

between the mechanical and the heat-generating processes. The former is 

confined to the channel and the latter to the contacts. As we will see in 

the next few lectures, the latter is easily taken care of, indeed so easily 

that it is easy to miss the profound nature of what is being accomplished. 

 

Even quantum transport can be discussed in relatively elementary terms 

using this viewpoint. My own research has largely been focused in this 

area developing the NEGF method, but we will get to it only in Part III 

after we have “set the stage” in Parts I and II using a semiclassical 

picture. 

 

But does this viewpoint help us understand long conductors? Short 

conductors may be elastic and conceptually simple, but don’t we finally 

have to deal with distributed heat generation if we want to understand 

long conductors? 

 

We argue that many properties of long conductors, especially at low bias 

can be understood in simple terms by viewing them as a series of elastic 

resistors as sketched in Fig.1.6. 
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Fig.1.6. Long resistors can be approximately viewed as a series of elastic resistors, as 

discussed in Section 3.3. 

 

Many well-known results like the conductivity and the thermoelectric 

coefficients for large conductors, that are commonly obtained from the 

BTE, can be obtained in a more transparent manner by using this 

viewpoint, as we will show in the first two parts of these lectures. We 

will then use this viewpoint in Part III to look at a variety of quantum 

transport phenomena like resonant tunneling, conductance quantization, 

the integer quantum Hall effect and spin precession. 

 

In short, the lesson of nanoelectronics we are trying to convey is the 

utility of the concept of an elastic resistor with its clean separation of 

mechanics from thermodynamics. The concept was introduced by Rolf 

Landauer in 1957 and has been widely used in mesoscopic physics ever 

since the seminal work in the 1980’s helped establish its relevance to 

understanding experiments in short conductors. 

 

What we hope to convey in these lectures is that the concept of an elastic 

resistor is not just useful for short conductors but provides a fresh new 

perspective for long conductors as well, that makes a wide variety of 

devices and phenomena transparent and accessible. 

 

I do not think any of the end results will come as a surprise to the 

experts. I believe they all follow directly from the BTE or the NEGF and 

one might well ask whether anything is gained from approximate 

physical pictures based on elastic resistors. This is a subjective matter 
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that is not easy to argue. Perhaps Feynman (1963) expressed it best in his 

Lectures on Physics when he said 

 

 “.. people .. say .. there is nothing which is not contained in the 

equations .. if I understand them mathematically inside out, I will 

understand the physics inside out. Only it doesn’t work that way. .. A 

physical understanding is a completely unmathematical, imprecise 

and inexact thing, but absolutely necessary for a physicist.” 

 

I believe the elastic resistor contributes to our physical understanding of 

the BTE and the NEGF method, without being too “imprecise” or 

“inexact”, and I hope it will facilitate the insights needed to take us to the 

next level of understanding, discovery and innovation.  
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Lecture 2 

Why Electrons Flow 

2.1. Two Key Concepts  

2.2. Fermi Function 

2.3. Non-equilibrium: Two Fermi Functions 

2.4. Linear Response 

2.5. Difference in “Agenda” Drives the Flow 

 

 

It is a well-known and well-

established fact, namely that when 

the two terminals of a battery are 

connected across a conductor, it 

gives rise to a current due to the 

flow of electrons across the 

channel from the source to the drain. 

 

If you ask anyone, novice or expert, what causes electrons to flow, by far 

the most common answer you will receive is that it is the electric field. 

However, this answer is incomplete at best. After all even before we 

connect a battery, there are enormous electric fields around every atom 

due to the positive nucleus whose effects on the atomic spectra are well-

documented. Why is it that these electric fields do not cause electrons to 

flow, and yet a far smaller field from an external battery does? 

 

The standard answer is that microscopic fields do not cause current to 

flow, a macroscopic field is needed. This too is not satisfactory, for two 

reasons. Firstly, there are well-known inhomogeneous conductors like p-

n junctions which have large macroscopic fields extending over many 

micrometers that do not cause any flow of electrons till an external 

battery is connected. 
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Secondly, experimentalists are now measuring current flow through 

conductors that are only a few atoms long with no clear distinction 

between the microscopic and the macroscopic. This is a result of our 

progress in nanoelectronics, and it forces us to search for a better answer 

to the question, “why electrons flow.” 

2.1 Two Key Concepts 

To answer this question, we need two key concepts. First is the density 

of states per unit energy D(E) available for electrons to occupy inside 

the channel (Fig.2.1). For the benefit of experts, I should note that we are 

adopting what we will call a "point channel model" represented by a 

single density of states D(E). More generally one needs to consider the 

spatial variation of D(E), as we will see in Lecture 8, but there is much 

that can be understood just from our point channel model. 

 

 

 

 
 
Fig.2.1. 

The first step in understanding the operation 

of any electronic device is to draw the 

available density of states D(E) as a function 

of energy E, inside the channel and to locate 

the equilibrium electrochemical potential µ0 

separating the filled from the empty states. 

 

 

The second key input is the location 

of the electrochemical potential, µ0 

which at equilibrium is the same 

everywhere, in the source, the drain 

and the channel. Roughly speaking (we will make this statement more 

precise shortly) it is the energy that demarcates the filled states from the  
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empty ones. All states with energy E < µ0 are filled while all states with 

E > µ0 are empty. For convenience I might occasionally refer to the 

electrochemical potential as just the “potential”. 

 

 
 

 

 

 

 

 

Fig.2.2. 

When a voltage is applied 

across the contacts, it lowers 

all energy levels at the positive 

contact (drain in the picture). 

As a result the electrochemical 

potentials in the two contacts 

separate: µ1 - µ2 = qV. 

 

 

 

 

 

When a battery is connected across the two contacts creating a potential 

difference V between them, it lowers all energies at the positive terminal 

(drain) by an amount qV, - q being the charge of an electron (q = 1.6 x 

10
-19

 coulombs) making the two electrochemical potentials separate by 

qV as shown in Fig.2.2: 

   µ1 − µ2 = qV   (2.1) 

Just as a temperature difference causes heat to flow and a difference in 

water levels makes water flow, a difference in electrochemical potentials 

causes electrons to flow. Interestingly, only the states in and around an 

energy window around µ1 and µ2 contribute to the current flow, all the 

states far above and well below that window playing no part at all. Let us 

explain why. 
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2.1.1 Energy Window for Current Flow 

Each contact seeks to bring the channel into equilibrium with itself, 

which roughly means filling up all the states with energies E less than its 

electrochemical potential µ and emptying all states with energies greater 

than µ.  

 

Consider the states with energy E that are less than µ1 but greater than µ2. 

Contact 1 wants to fill them up since E < µ1, but contact 2 wants to 

empty them since E > µ2. And so contact 1 keeps filling them up and 

contact 2 keeps emptying them causing electrons to flow continually 

from contact 1 to contact 2. 

 

Consider now the states with E greater than both µ1 and µ2. Both contacts 

want these states to remain empty and they simply remain empty with no 

flow of electrons. Similarly the states with E less than both µ1 and µ2 do 

not cause any flow either. Both contacts like to keep them filled and they 

just remain filled. There is no flow of electrons outside the window 

between µ1 and µ2, or more correctly outside ± a few kT of this window, 

as we will discuss shortly. 

 

This last point may seem obvious, but often causes much debate because 

of the common belief we alluded to earlier, namely that electron flow is 

caused by the electric field in the channel. If that were true, all the 

electrons should flow and not just the ones in any specific window 

determined by the contacts. 

2.2 Fermi Function 

Let us now make the above statements more precise. We stated that 

roughly speaking, at equilibrium, all states with energies E below the 

electrochemical potential µ0 are filled while all states with E > µ0 are 

empty. This is precisely true only at absolute zero temperature. More 

generally, the transition from completely full to completely empty occurs 

over an energy range ~ ± 2 kT around E = µ0  where k is the Boltzmann 
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constant (~ 80 µeV/K) and T is the absolute temperature. Mathematically 

this transition is described by the Fermi function : 

 

f (E) =
1

exp
E − µ

kT







+ 1
        (2.2) 

This function is plotted in Fig.2.3 (left panel), though in an 

unconventional form with the energy axis vertical rather than horizontal. 

This will allow us to place it alongside the density of states, when trying 

to understand current flow (see Fig.2.4). 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

Fig.2.3. Fermi function and the normalized (dimensionless) thermal broadening function. 

 

For readers unfamiliar with the Fermi function, let me note that an 

extended discussion is needed to do justice to this deep but standard 

result, and we will discuss it a little further in Lecture 16 when we talk 

about the key principles of equilibrium statistical mechanics. At this 

stage it may help to note that what this function (Fig.2.3) basically tells 

us is that states with low energies are always occupied (f=1), while states 

with high energies are are always empty (f=0), something that seems 

reasonable since we have heard often enough that (1) everything goes to 

its lowest energy, and (2) electrons obey an exclusion principle that stops 
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them from all getting into the same state. The additional fact that the 

Fermi function tells us is that the transition from f=1 to f=0 occurs over 

an energy range of ~ ± 2kT around µ0. 

2.2.1. Thermal Broadening Function 

Also shown in Fig.2.3 is the derivative of the Fermi function, multiplied 

by kT to make it dimensionless: 

 

FT (E,µ) = kT −
∂ f

∂E







 (2.3a) 

Using Eq.(2.2) it is straightforward to show that 

 

FT (E,µ) =
e

x

(ex +1) 2
, where x ≡

E − µ

kT
 (2.3b) 

Note: 

(1) From Eq.(2.3b) it can be seen that 

  FT (E,µ) = FT (E − µ) = FT (µ − E)  (2.4a) 

 (2) From Eqs.(2.3b) and (2.2) it can be seen that 

  FT = f (1− f )  (2.4b) 

(3) If we integrate FT over all energy the total area equals kT: 

 

dE

− ∞

+ ∞

∫ FT (E,µ) = kT dE

− ∞

+ ∞

∫ −
∂ f

∂E







 

 
= kT − f[ ] −∞

+∞
= kT (1− 0) = kT

 (2.4c) 

so that we can approximately visualize FT as a rectangular "pulse" 

centered around E=µ with a peak value of 1/4 and a width of ~ 4kT.  
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2.3 Non-equilibrium: Two Fermi Functions 

When a system is in equilibrium the electrons are distributed among the 

available states according to the Fermi function. But when a system is 

driven out-of-equilibrium there is no simple rule for determining the 

distribution of electrons. It depends on the specific problem at hand 

making non-equilibrium statistical mechanics far richer and less 

understood than its equilibrium counterpart. 

 

For our specific non-equilibrium problem, we argue that the two contacts 

are such large systems that they cannot be driven out-of-equilibrium. 

And so each remains locally in equilibrium with its own electrochemical 

potential giving rise to two different Fermi functions (Fig.2.4): 

 

f1(E) =
1

exp
E − µ1

kT







+ 1
        (2.5a) 

 

f2 (E) =
1

exp
E − µ2

kT







+ 1
        (2.5b) 

The "little" channel in between does not quite know which Fermi 

function to follow and as we discussed earlier, the source keeps filling it 

up while the drain keeps emptying it, resulting in a continuous flow of 

current. 

In summary, what makes electrons flow is the difference in the "agenda" 

of the two contacts as reflected in their respective Fermi functions, f1(E) 

and f2(E). This is qualitatively true for all conductors, short or long. But 

for short conductors, the current at any given energy E is quantitatively 

proportional to  

  

representing the difference in the probabilities in the two contacts. This 

quantity goes to zero when E lies way above µ1, µ2 since f1 and f2 are 

I(E) ~ f1(E) − f2(E)
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both zero. It also goes to zero when E lies way below µ1, µ2 since f1 and 

f2 are both one. Current flow occurs only in the intermediate energy 

window, as we had argued earlier. 

 

 
Fig.2.4. 

Electrons in the contacts occupy the available states with a probability described by a 

Fermi function f(E) with the appropriate electrochemical potential µ. 

2.4 Linear Response 

Current-voltage relations are typically not linear, but there is a common 

approximation that we will frequently use throughout these lectures to 

extract the "linear response" which refers to the low bias conductance, 

dI/ dV, as V � 0. 

The basic idea can be appreciated by plotting the difference between two 

Fermi functions, normalized to the applied voltage 

 

F(E) =
f1(E) − f2 (E)

qV / kT
 

 (2.6) 

where µ1 = µ0 + (qV / 2)  

 µ2 = µ0 − (qV / 2)  
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Fig.2.5 shows that the difference function F gets narrower as the voltage 

is reduced relative to kT. The interesting point is that as qV is reduced 

below kT, the function F approaches the thermal broadening function FT 

we defined (see Eq.(2.3a)) in Section 2.2: 

  

so that from Eq.(2.6)  

  (2.7) 

if the applied voltage µ1 - µ2 = qV is much less than kT. 

 

                      

 
Fig.2.5. F(E) from Eq.(2.6) versus 

(E-µ0)/kT for different values of 

y=qV/kT. 

 

 

 

 

 

 

 

The validity of Eq.(2.7) for qV << kT can be checked numerically if you 

have access to MATLAB or equivalent. For those who like to see a 

mathematical derivation, Eq. (2.7) can be obtained using the Taylor 

series expansion described in Appendix A to write 

 f (E) − f0 (E) ≈ −
∂ f0

∂E







(µ − µ0 )   (2.8) 

Eq. (2.8) and Eq. (2.7) which follows from it, will be used frequently in 

these lectures. 

F(E) → FT (E), as qV / kT → 0

f1(E) − f2 (E) ≈
qV

kT
FT (E,µ0 ) = −

∂ f0

∂E







qV
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2.5. Difference in “Agenda” Drives the Flow 

Before moving on, let me quickly reiterate the key point we are trying to 

make, namely that current is determined by 

 −
∂ f0 (E)

∂E
and not by f0 (E) 

The two functions look similar over a limited range of energies  

 −
∂ f0 (E)

∂E
≈

f0 (E)

kT
if E − µ0 >> kT  

So if we are dealing with a so-called “non-degenerate conductor” where 

we can restrict our attention to a range of energies satisfying this 

criterion, we may not notice the difference. 

But in general these functions look very different (see Fig.2.3) and the 

experts agree that current depends not on the Fermi function, but on its 

derivative. However, we are not aware of any elementary treatment that 

leads to this result. 

Freshman physics texts start by treating the force due to an electric 

electric field F as the driving term and adding a frictional term to 

Newton’s law (τ m is the so-called “momentum relaxation time”) 

 

 

d(mv)

dt
= (−qF)

Newton 's Law
� ������������

−
mv

τ m

Friction
���

 

At steady-state (d/dt = 0) this gives a non-zero drift velocity, from which 

one calculates the current. This elementary approach leads to the Drude 

formula (discussed in Lecture 5) which played a major historical role in 

our understanding of current flow. But since it treats electric fields as the 

driving term, it also suggests that the current depends on the total number 

of electrons. This is commonly explained away by saying that there are 

mysterious quantum mechanical forces that prevent electrons in full 

bands from moving and what matters is the number of “free electrons”. 
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But this begs the question of which electrons are free and which are not, 

a question that becomes more confusing for atomic scale conductors. 

It is well-known that the conductivity varies widely, changing by a factor 

of ~10
20

 going from copper to glass, to mention two materials that are 

near two ends of the spectrum. But this is not because one has more 

electrons than the other. The total number of electrons is of the same 

order of magnitude for all materials from copper to glass.  

Whether a conductor is good or bad is determined by the availability of 

states in an energy window ~ kT around the electrochemical potential µ0, 

which can vary widely from one material to another. This is well-known 

to experts and comes mathematically from the dependence of the 

conductivity 

 on −
∂ f0 (E)

∂E
rather than f0 (E)  

a result that typically requires advanced treatments based on the 

Boltzmann (Lecture 7) or the Kubo formalism (Lecture 15). 

Our bottom-up approach, however, leads us to this result in an 

elementary way as we have just seen. Current is driven by the difference 

in the “agenda” of the two contacts which for low bias is proportional to 

the derivative of the equilibrium Fermi function: 

 f1(E) − f2 (E) ≈ −
∂ f0

∂E







qV  

There is no need to invoke mysterious forces that stop some electrons 

from moving, though one could perhaps call f1 - f2 a mysterious force, 

since the Fermi function (Eq.(2.2)) reflects the exclusion principle. In 

Lecture 11 we will see how this approach is readily extended to describe 

the flow of phonons which is proportional to n1 – n2 , n being the Bose 

(not Fermi) function which is appropriate for particles that do not have 

an exclusion principle. 
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Lecture 3 

The Elastic Resistor 

3.1. How an Elastic Resistor Dissipates Heat 

3.2. Conductance of an Elastic Resistor  

3.3. Why an Elastic Resistor is Relevant  

 

We saw in the last Lecture that the flow of electrons is driven  by the 

difference in the "agenda" of the two contacts as reflected in their 

respective Fermi functions, f1(E) and f2(E). The negative contact with its 

larger f(E) would like to see more electrons in the channel than the 

positive contact. And so the positive contact keeps withdrawing electrons 

from the channel while the negative contact keeps pushing them in. 

This is true of all conductors, big and small. But it is generally difficult 

to express the current as a simple function of f1(E) and f2(E), because 

electrons jump around from one energy to another and the current flow at 

different energies is all mixed up. 

 

 
Fig. 3.1. 

An elastic resistor: 

Electrons travel along 

fixed energy channels. 

 

But for the ideal elastic resistor shown in Fig.1.4, the current in an 

energy range from E to E+dE is decoupled from that in any other energy 

range, allowing us to write it in the form (Fig.3.1) 

 dI =
1

q
dE G(E) ( f1(E) − f2 (E))  
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and integrating it to obtain the total current I. Making use of Eq.(2.7), 

this leads to an expression for the low bias conductance 

 
I

V
= dE −

∂ f0

∂E







− ∞

+ ∞

∫ G(E)   (3.1) 

where  can be visualized as a rectangular pulse of area equal 

to one, with a width of ~  ± 2kT (see Fig.2.3, right panel). 

 

Let me briefly comment on a general point that often causes confusion 

regarding the direction of the current. As I noted in Lecture 2, because 

the electronic charge is negative (an unfortunate choice, but something 

we cannot do anything about) the side with the higher voltage has a 

lower electrochemical potential. Inside the channel, electrons flow from 

the higher to the lower electrochemical potential, so that the electron 

current flows from the source to the drain. The conventional current on 

the other hand flows from the higher to the lower voltage. 

 

 
 
 
 
Fig.3.2. 

Because an electron carries negative 

charge, the direction of the electron current 

is always opposite to that of the 

conventional current. 

 

 

 

 

 

Since our discussions will usually involve electron energy levels and the 

electrochemical potentials describing their occupation, it is also 

convenient for us to use the electron current instead of the conventional 

current. For example, in Fig.3.2 it seems natural to say that the current 

flows from the source to the drain and not the other way around. And 

(− ∂ f0 / ∂E)
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that is what I will try to do consistently throughout these Lectures. In 

short, we will use the current, I, to mean electron current. 

 

Getting back to Eq.(3.1), we note that it tells us that for an elastic 

resistor, we can define a conductance function G(E) whose average over 

an energy range ~ ± 2kT around the electrochemical potential µ0 gives 

the experimentally measured conductance. At low temperatures, we can 

simply use the value of G(E) at E = µ0. 

This energy-resolved view of conductance represents an enormous 

simplification that is made possible by the concept of an elastic resistor 

which is a very useful idealization that describes short devices very well 

and provides insights into the operation of long devices as well. 

Note that by elastic we do not just mean “ballistic” which implies that 

the electron goes straight from source to drain, “like a bullet.” We also 

include the possibility that an electron takes a more traditional diffusive 

path as long as it changes only its momentum and not its energy along 

the way: 

 

 

 

 

 

In Section 3.2 we will obtain an expression for the conductance function 

G(E) for an elastic resistor in terms of the density of states D(E). 

The concept of an elastic resistor is not only useful in understanding 

nanoscale devices, but it also helps understand transport properties like 

the conductivity of large resistors by viewing them as multiple elastic 

resistors in series, as explained in Section 3.3. This is what makes the 

bottom-up approach so powerful in clarifying transport problems in 

general. 

 

But before we talk further about the conductance of an elastic resistor, let 

us address an important conceptual issue. Since current flow (I) through 
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a resistor (R) dissipates a Joule heat of I
2
R per second, it seems like a 

contradiction to talk of an elastic resistor where electrons do not lose 

energy? The point to note is that while the electron does not lose any 

energy in the channel of an elastic resistor, it does lose energy both in the 

source and the drain and that is where the Joule heat gets dissipated. This 

is a very non-intuitive result that seems to be at least approximately true 

of nanoscale conductors: An elastic resistor has a resistance R 

determined by the channel, but the corresponding heat I
2
R is entirely 

dissipated outside the channel.  

3.1. How an Elastic Resistor Dissipates Heat 

How could this happen? Consider a one level elastic resistor having one 

sharp level with energy ε . Every time an electron crosses over through 

the channel, it appears as a "hot electron" on the drain side with an 

energy ε  in excess of the local electrochemical potential µ2 as shown 

below: 
 

 

Energy dissipating processes in the contact quickly make the electron get 

rid of the excess energy ( ε − µ2 ). Similarly at the source end an empty 

spot (a "hole") is left behind with an energy  that is much less than the 

local electrochemical potential µ1, which gets quickly filled up by 

electrons dissipating the excess energy ( µ1 − ε ). 

In effect, every time an electron crosses over from the source to the 

drain, 

ε
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The total energy dissipated is  

                    

which is supplied by the external battery that maintains the potential 

difference µ1 - µ2. The overall flow of electrons and heat is summarized 

in Fig.3.3 below. 

 

 
Fig.3.3. Flow of electrons and heat in a one-level elastic resistor having one level with 

E = ε . 

 

If N electrons cross over in a time t 

  

since  

Note that V*I is the same as I
2
R and V

2
G. 

 

The heat dissipated by an "elastic resistor" thus occurs in the contacts. As 

we will see next, the detailed mechanism underlying the complicated  

process of heat transfer in the contacts can be completely bypassed 

simply by legislating that the contacts are always maintained in 

equilibrium with a fixed electrochemical potential. 

an energy (µ1 − ε ) is dissipated in t he source

an energy (ε − µ2 ) is dissipated in t he drain

µ1 − µ2 = qV

Dissipated power = qV * N / t = V * I

Current = q * N / t
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3.2. Conductance of an Elastic Resistor 

Consider first the simplest elastic resistor having just one level with 

energy  in the energy range of interest through which electrons can 

squeeze through from the source to the drain. We can write the resulting 

current as 

    (3.2) 

where t is the time it takes for an electron to transfer from the source to 

the drain. 

 

We can extend Eq.(3.2) for the current through a one-level resistor to any 

elastic conductor (Fig.3.1) with an arbitrary density of states D(E), 

noting that all energy channels conduct independently in parallel. We 

could first write the current in an energy channel between E and E+dE 

 dI = dE
D(E)

2

q

t
( f1(E) − f2 (E))  

since an energy channel between E and E+dE contains D(E)dE states, 

half of which contribute to carrying current from source to drain. 

Integrating we obtain an expression for the current through an elastic 

resistor: 

 I =
1

q
− ∞

+ ∞

∫ dE G(E) ( f1(E) − f2 (E))  (3.3) 

where 

G(E) =
q

2
D(E)

2t(E)  (3.4) 

If the applied voltage µ1 - µ2 = qV is much less than kT, we can use 

Eq.(2.7) to write 

ε

Ione level =
q

t
f1(ε) − f2(ε)( )
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I = V dE

− ∞

+ ∞

∫ −
∂ f0

∂E







G(E)

 

which yields the expression for conductance stated earlier in Eq.(3.1).  

3.2.1. Degenerate and Non-Degenerate Conductors 

Eq. (3.1) is valid in general, but depending on the nature of the 

conductance function G(E) and the thermal broadening function 

− ∂ f0 / ∂E , two distinct physical pictures are possible. The first is case A 

where the conductance function G(E) is nearly constant over the width of 

the broadening function. 

 

 

 

 

 

 

 

 

 

 

 

 

We could then pull G(E) out of the integral in Eq.(3.1) to write 

 
I

V
≈ G(E = µ0 ) dE −

∂ f0

∂E







− ∞

+ ∞

∫ = G(E = µ0 )  (3.5)  

This relation suggests an operational definition for the conductance 

function G(E): It is the conductance measured at low temperatures for a 

channel with its electrochemical potential µ0 located at E. 

 

Case A is a good example of the so-called degenerate conductors. The 

other extreme is the non-degenerate conductor shown in case B where 
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the electrochemical potential is located at an energy many kT’s below the 

energy range where the conductance function is non-zero. As a result 

over the energy range of interest where G(E) is non-zero, we have 

 x ≡
E − µ0

kT
>> 1 

and it is common to approximate the Fermi function with the Boltzmann 

function 

 
1

1+ e
x

≈ e
−x  

so that 
I

V
≈

dE

kT
− ∞

+ ∞

∫ G(E) e
−(E−µ

0
)/kT

 

This non-degenerate limit is commonly used in the semiconductor 

literature though the actual situation is often intermediate between 

degenerate and non-degenerate limits. 

 

We will generally use the degenerate limit expressed by Eq.(3.5) writing 

  

with the understanding that the quantities D and t are evaluated at E = µ0 

and depending on the nature of G(E) may need to be averaged over a 

range of energies using − ∂ f0 / ∂E  as a “weighting function” as 

prescribed by Eq.(3.1).  

 

Eq.(3.4) seems quite intuitive: it says that the conductance is proportional 

to the product of two factors, namely the availability of states (D) and 

the ease with which electrons can transport through them (1/t). This is 

the key result that we will use in subsequent Lectures. 

G =
q

2
D

2t



 The Elastic Resistor 35 

 

 

3.3. Why an Elastic Resistor is Relevant 

The elastic resistor model is clearly of great value in understanding 

nanoscale conductors, but the reader may well wonder how an elastic 

resistor can capture the physics of real conductors which are surely far 

from elastic? In long conductors inelastic processes are distributed 

continuously through the channel, inextricably mixed up with all the 

elastic processes (Fig.3.4). Doesn't that affect the conductance and other 

properties we are discussing? 

 

 

 
 

 

 

 

 

 

 

 

 

Fig.3.4 

Real conductors have inelastic scatterers distributed throughout the channel. 

 

 

 

 

 

 

 

Fig.3.5 

A hypothetical series of elastic resistors as an approximation to a real resistor with 

distributed inelastic scattering as shown in Fig.3.4. 

One way to apply the elastic resistor model to a large conductor with 

distributed inelastic processes is to break up the latter conceptually into a 

sequence of elastic resistors (Fig.3.5), each much shorter than the 

physical length L, having a voltage that is only a fraction of the total 
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voltage V. We could then argue that the total resistance is the sum of the 

individual resistances. 

This splitting of a long resistor into little sections of length shorter than 

Lin (Lin: length an electron travels on the average before getting 

inelastically scattered) also helps answer another question one may raise 

about the elastic resistor model. We obtained the linear conductance by 

resorting to a Taylor’s series expansion (see Eq.(2.6)). But keeping the 

first term in the Taylor’s series can be justified only for voltages V < 

kT/q, which at room temperature equals 25 mV. But everyday resistors 

are linear for voltages that are much larger. How do we explain that? The 

answer is that the elastic resistor model should only be applied to a short 

length < Lin and as long as the voltage dropped over a length Lin is less 

than kT/q we expect the current to be linear with voltage. The terminal 

voltage can be much larger. 

However, this splitting into short resistors needs to be done carefully. A 

key result we will discuss in the next Lecture is that Ohm’s law should 

be modified 

 

 

from R =
ρ

A
L

Eq.(1.1)
� ������

to R =
ρ

A
L + λ( )

Eq.(1.4)
� ����������

 

to include an extra fixed resistance ρλ / A  that is independent of the 

length and can be viewed as an interface resistance associated with the 

channel- contact interfaces. Here λ  is a length of the order of a mean 

free path, so that this modification is primarily important for near 

ballistic conductors (L ~ λ ) and is negligible for conductors that are 

many mean free paths long (L >> λ ). 

Conceptually, however, this additional resistance is very important if we 

wish to use the hypothetical structure in Fig.3.5 to understand the real 

structure in Fig.3.4. The structure in Fig.3.5 has too many interfaces that 

are not present in the real structure of Fig.3.4 and we have to remember 

to exclude the resistance coming from these conceptual interfaces. 
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For example, if each section in Fig.3.5 is of length L having a resistance 

of 

 R =
ρ(L + λ )

A
 

then the correct resistance of the real structure in Fig.3.4 of length 3L is 

given by 

 R =
ρ(3L + λ)

A
and NOT by R =

ρ(3L + 3λ)

A
 

Clearly we have to be careful to separate the interface resistance from the 

length dependent part. This is what we will do next. 


