Pre-workshop activities: be ready for the hands-on session

Alejandro Strachan
strachan@purdue.edu
School of Materials Engineering & Birck Nanotechnology Center
Purdue University
West Lafayette, Indiana USA
STEP 1: Signing up for a nanoHUB account
STEP 2: Make sure you can launch a tool

From your browser go to link: https://nanohub.org/tools/matdatarepo/

Once Jupyter starts you will be able to run example notebooks
STEP 3: join the ML group in nanoHUB for Q&A

https://nanohub.org/groups/ml

Request membership

Overview
Educational Material and Training
Simulation Tools
Research Seminars
Hands-on Data Science and Machine Learning Training Series
Workshop Abstracts

Hands-on Machine Learning Workshop
We regularly conduct online, hands-on machine learning workshops to help students, researchers, and industrial practitioners equip themselves with skills in data science and machine learning to complement their research.

Workshop Series
Pre-recorded workshops from Spring 2020

Educational Material and Training
Hands-on Learning Modules on Data Science and Machine Learning in Engineering
This series of modules introduces key concepts in data science in the context of application in materials science and engineering. Each module consists of a recorded lecture, hands-on tutorial, and homework assignment with online simulations.

Overview: Machine Learning for Materials Science
This talk provides an overview of machine learning and its possible applications in material science. Suggested hands-on activities are using the nanoHUB tool Machine Learning for Materials Science: Part 1 or the tool Crime: Tools for Materials Informatics.

Data Science and Machine Learning for MSE Students: Introduction and Hands-on Activities
This document introduces basic concepts of data science and machine learning in the context of materials science applications. The focus is on hands-on activities where readers use open, online tools in nanoHUB to explore the concepts being introduced. Topics covered include querying data resources and data organization and preparation, Regression exercises, including neural networks, to predict materials properties from a set of descriptors, and a classification exercise designed to predict the crystal structure of elemental metals. The examples are provided as fully contained Jupyter notebooks and state of the art, open software. They are designed to introduce to the main steps in data science workflows and readers can modify or extend them to solve additional problems.
Go to the forum for Q&A during and after the session.