Multi-Scale Nonequilibrium Green’s Function Method for LEDs: Balance of Thermalization and Tunneling

Junzhe Geng,1,a1, Kuang-Chung Wang,1 Prasad Sarangapani,1 Ben Browne,2 Carl Wordelman,2 Erik Nelson,2 Tillmann Kubis,1 and Gerhard Klimeck1

Key Challenges in LED Development

- Efficiency droop
 - Auger effect at high carrier density
 - Band-to-band recombination
- Uneven carrier distribution
 - Carrier pile-up causes ‘deep’ drops
- Current density distribution
 - Carrier profile leads to ‘short’ drops

Device Physics

- Quantum Effects Too Important to Ignore
 - Quantum interference everywhere
 - Distinct classical and quantum regions
 - Coupling between continua and discrete states
 - Strong scattering introduces broadening
- Current transport behavior
 - Classical transport often ignored
- Carrier density
 - Impact on efficiency, recombination, and calculated efficiency

Simulation on a realistic LED

- Atomic resolution with sophisticated bandstructure
- Potential energy band diagram
- Results
 - IQE, QM emission matches experimental observations
- Results
 - Long range tunneling
 - Efficient transport in the model
 - Long range tunneling impacts device operation

Results: IQE, QM emission matches experimental observations

Results: Long range Tunneling + Hot Electron Formation

- Quantum transport
 - Carrier density
 - Turn on voltage

Modeling Challenges

- Classical Models Missing Key Information
- Multi-charge self-consistent transport
- Electrons and holes
- State injection
- Quantum transport
- Tunneling and thermionic emission

Modeling Challenges — Full NEGF Transport Solution Too Expensive

- Easy solution
 - No quantum transport tool available for LED industry
- NEGF throughout device
 - Quantum mechanics are “exact” everywhere
- Model must provide
 - Carrier transport behavior, carrier density, and turn-on voltage
 - Current and hole transport through extended structure
 - Accurate treatment of tunneling and thermionic emission
 - Physical, radiative recombination model
 - Numerical efficiency, low level engineering

Multi-Domain, Multi-Physics Model

- Charge self-consistent + quantum transport + detailed balance
- Atomistic 20 band tight binding
- MQW: GaN/InGaN
- Structure: GaN(3.1/4.6)/InGaN(3.1/4.6)/GaN
- Simulation on a realistic LED
 - Rate equations coupling electron/hole transport
 - Multiple Domains / Physics
 - Barriers:
 - High carrier density, strong scattering
 - Coherent transport (s-mobile, e-ballistic)
 - Scattering can be included
 - NEGF throughout device
 - Quantum mechanics are “exact” everywhere

Status and Future Plan

- Needs for other applications
 - Auger emission spectroscopy
 - Auger model
 - Quantum transport tool
 - Quantum mechanics are “exact” everywhere

Footnotes:

1 Network for Computational Nanotechnology, Purdue University, West Lafayette, IN 47907, USA
2 Lumileds, 370 W. Trimble Road, San Jose, CA 95131, USA
a Email: jgeng@purdue.edu