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Abstract 

We show that the expressions for current and heat current 
calculated via (the non-linearized) ballistic and diffusive 
transport formalisms reduce to the same form for solid-state 
devices one electron mean free path in length. The materials 
parameters for thermionic and thermoelectric devices are also 
shown to be equal, rather than differing by a multiplicative 
constant. We derive a simple transport equation that includes 
both ballistic and diffusive contributions to the current, and, 
as an example, use this to calculate the maximum temperature 
difference obtainable for a piece of Bi2Te3 as a function of its 
length, from less than an electron mean-free path to much 
greater than a mean-free path. Finally we briefly discuss 
similarities and differences between thermionic and 
thermoelectric devices in the regime where device length is of 
the order of a mean-free path length. 

Introduction 
It has been shown that thermoelectric and thermionic 

devices both achieve Carnot efficiency in the same 
thermodynamic limit; when electron transport between parts 
of the device that differ in temperature is strictly limited to the 
energy where the occupation of states is constant [1,2]. Given 
that the underlying thermodynamics of the two types of 
devices is the same, it is useful to consider whether there are 
differences between the devices which become apparent only 
when non-ideal effects such as phonon heat leaks are taken 
into account.  

A number of previous papers have pointed out similarities 
in the ‘materials parameter’ which limits the maximum 
temperature difference achievable in thermionic and 
thermoelectric devices [3-5]. Perhaps the most comprehensive 
comparison was done by Ulrich et al. [5], who found that the 
materials parameters of thermionic and thermoelectric devices 
differed by a multiplicative factor of F0/F1/2√π, where Fn is a 
Fermi integral of order n.  

Here we point out a minor error in [5] and show that, in 
fact, the materials parameter of thermionic and thermoelectric 
devices is identical, and show that the transport formalisms 
used to describe the two types of devices gives precisely the 
same results for current, heat current and efficiency for device 
with a length equal to the electron mean-free path, λ. We 
further derive a simple expression which considers the 
contributions of both ballistic and diffusive electron currents 
for devices with length L < λ to L>λ, and use it to calculate 
an approximate solution for the maximum temperature 
difference achievable for Bi2Te3 as a function of length. By 
comparing this to the maximum achievable temperature 
difference for a device of the same length but with reservoirs 
which have a lower conduction band edge, we illustrate the 

potential advantages of thermionic devices over 
thermoelectric devices in the ballistic transport regime. 

Ballistic and Diffusive transport formalisms for devices 
with length of the order of an electron mean-free path 

Current density in both thermionic and thermoelectric 
devices can be expressed as 

( )∫∫∫= dkkjJ      (1) 

where j(k)δk is the net ‘energy-resolved’ current of electrons 
flowing in the direction opposite to the temperature gradient 
with momentum in the range δk around k. In thermionic 
devices with a width less than the mean-free path, most 
electrons travel ballistically from one reservoir to another. In 
this case the energy-resolved current density is given by (with 
dependence upon k implicit) 

( ) kfvqDkkj r
x

rb δζδ ∆=     (2) 

where Dr(k) is the density of states (DOS) in the reservoirs, 
ζ(k) is the probability that electrons are transmitted between 
the reservoirs, vx

r(k) is the velocity in the direction of 
transport, given by the dispersion relation E(k) in the 
reservoirs, and  
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is the difference in the Fermi occupation of states in the 
cold/hot reservoirs and where µC/H is the electrochemical 
potential and TC/H the temperature of electrons at the cold/hot 
ends of the device. 

Here we follow previous work [5] and assume the 
transmission probability depends upon the total momentum of 
electrons rather than momentum in the direction of transport 
only, allowing a direct comparison with thermoelectrics in 
which the energy of mobile electrons is also restricted in all 
three dimensions (this assumption is made implicitly in [5] 
between Eq. 1.1 and Eq. 1.3). The theoretical differences 
between thermionic devices in which the transmission 
probability is a function of k and kx are explored in detail in 
other papers [6-8]. 

In thermoelectric devices the energy-resolved diffusive 
electron current density may be obtained from the Boltzmann 
transport equation under the relaxation time approximation, 
and can be written as [9] 

( ) ( ) ( ) k
dx
dfkvqDkkj l

x
ld δτδ

2
=    (4) 

where Dl(k) is the local DOS, vx
l(k) is the velocity of electrons 

in the direction of transport, determined from the local 
dispersion relation E(k), and τ(k) = τ0E(k)r is the relaxation 
time in the direction of transport. 

0-7803-9552-2/05/$20.00 ©2005 IEEE                                      196                    2005 International Conference on Thermoelectrics 



In solid-state power generators and refrigerators with a 
width close to the electronic mean-free path it is expected that 
Eqns (2) and (4) should yield the same results. To show this, 
we take the energy dependence of the relaxation time to be r 
= -1/2, which corresponds to scattering that is dominated by 
acoustic phonons and results in a mean-free path in the 
direction of transport, λ ≡ vx(k)τ0E-1/2 which is independent of 
energy if a dispersion relation of ( ) *22 2mkkE h=  is 
assumed. We also note that df/dx ≈ [f(x)-f(x+δx)]/δx when δx 
is small, so that, for a piece of thermoelectric material L in 
length, df/dx ≈ ∆f/L, and Eqn. (4) becomes 

( ) k
L
fvDqkkj l

x
ld δλδ ∆

=    

 (5) 
It can be seen that Eqns. (2) and (5) have an identical form 

when L = λ, where the product of ζ(k)Dr(k)vx
r(k) in Eq. (2) 

plays the same role in determining the energy spectrum of 
electrons which carry current as the product Dl(k)vx

l(k) does in 
Eqn. (5). This simple result provides an additional 
underpinning for Ulrich, Barnes and Vining's observation in 
[5] that thermionic and thermoelectric devices refrigerate (or 
generate power) via the same underlying physical mechanism. 
To show that there is no sharp transition in the behavior of a 
solid-state power generator or refrigerator as its width 
changes from L < λ to L > λ, one can use the fact that the 
probability that an electron can travel a distance L without 
suffering a collision is [10] 
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to obtain an equation for energy-resolved current density 
useful in solid-state power generators and refrigerators of 
length L ≈ λ as 

( ) [ ]{ } kPjPjkkj db δδ −+= 1   (7) 
which can easily be generalized to the case where λ→λ(k). 
We note that Zeng and Chen [11] have addressed in some 
depth the problem of modeling combined thermionic and 
thermoelectric effects, including consideration of electron-
phonon interaction phenomena, while using Maxwell-
Boltzmann statistics to describe thermionic emission 
boundary conditions at material interfaces, an assumption we 
avoid in this somewhat simpler analysis. 

We can now write down an expression for the net heat 
current in a solid-state refrigerator of length L as: 
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The first term in Eqn. (8) is negative when there is a net flow 
of heat carried by electrons from the cold to the hot side of the 
material. It can be seen that the second last term, accounting 
for the ohmic heat that returns to the cold side of the device 
tends to one half in the limit that L >> λ, as has previously 
been pointed out by Shakouri et al. [3]. The last two terms in 
Eqn. (8) together account for the heat flow back from the hot 
side of the material via the lattice.  

By setting Eqn. (8) to zero, it is possible to calculate the 
maximum temperature difference, ∆T = TH – TC, which can be 
maintained between the two ends of the device for a particular 
length of material L. Assuming the dispersion relation 
( ) *22 2mkkE h= , Eqn. (8) can be written as: 
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where we have allowed for the fact that the density of states 
for electrons traveling ballistically can potentially be different 
to that for electrons which travel diffusively (for example due 
to a difference in the conduction band offset in the material on 
either side of the central thermoelectric as indicated in Fig. 1) 
by introducing an additive factor of ∆E to the ballistic term in 
the expression. 
  

 
Figure 1: Illustration of the two types of devices considered 
here. One consists of a single piece of thermoelectric, for 
example, Bi2Te3. The other can be considered to more closely 
resemble a thermionic device. It consists of the same piece of 
thermoelectric sandwiched between two conductors in which 
the conduction band edge is ∆E meV below the conduction 
band edge of the central piece of thermoelectric. The primary 
difference between the two is in the magnitude of DOS for the 
ballistic component of the current, Dr(E). 
 

It can be seen in Eqn. (8) that the same group of material 
parameters appear in the last term, irrespective of whether L 
>> λ such that the system is classified as a thermoelectric, or 
L << λ, such that the system is classified as a solid-state 
thermionic device. We have thus shown that these two types 
of devices share the same materials parameter. It can be 
shown that the multiplicative constant previously obtained in 
[5] arose from a discrepancy in assumptions about the energy 
dependency of the relaxation time [12]. 

We note that the thermoelectric materials parameter is 
often expressed in terms of the mobility µ0 = qτ/m*, however 
in doing this one assumes that the relaxation time is 
independent of energy, rather than proportional to E-1/2 as has 
been assumed here. In the next section we will look at Bi2Te3 
as an example in a numerical implementation of Eqn. (9), for 
which the energy dependence of the relaxation time is usually 
taken to be E-1/2 [13]. 



Maximum temperature difference for Bi2Te3 as a function 
of material length 

To illustrate the smooth transition from predominantly 
ballistic to predominantly diffusive electron transport as the 
length of a solid-state refrigerator varies from L < λ to L > λ, 
we have solved Eqn. (9) for a piece of n-type Bi2Te3 material, 
for which we have taken the following material parameters: 
m* = 0.5me [13], λ = 500nm [14] and κph = 1.5 Wm-1K-1 [13]. 
We took the temperature on the hot side of the material to be 
TH = 300K and used a dispersion relation of 
( ) *22 2mkkE h= . We have compared these results with those 

obtained by using a different density of states for ballistically 
transmitted electrons. This is intended to simulate in a 
straightforward way a ‘thermionic’ device, where the 
conduction band in the reservoirs is generally lower than that 
of the material forming the ‘barrier’, in this case, Bi2Te3.  

The numerical procedure was to guess initial values for 
the energy gap between the conduction band edge and the 
Fermi energy on the hot side of the material, µH (a larger 
value of µH corresponds to a quasi-Fermi energy further away 
from the band-edge) and the voltage applied between the cold 
and hot ends of the material, V. We then solve Eqn. (9) for the 
temperature difference which results in net cooling rate of 
zero, ∆T. This is the maximum temperature difference 
obtainable for the initial guesses for µH and V. We then varied 
V to maximize ∆T for the initial guess for µH, and then 
repeated this process for different values of µH until we 
finally obtain the maximum temperature difference, ∆Tmax for 
optimized values of µH and V.  

 
Figure 2: (Blue, solid line) Maximum temperature difference 
obtainable for Bi2Te3 as a function of length normalized on 
the electron mean free path. (Red, dotted line) Maximum 
temperature difference for a ‘thermionic’ device, where the 
density of states for the ballistic component of the current is 
different from that of the material forming the ‘barrier’. 
 

Results 
The results for ∆Tmax as a function of the length of the 

material measured in units of the electron mean free path are 
shown in Fig. 2. The blue solid curve corresponds to the case 
where the DOS is taken to be the same for both the ballistic 
and diffusive contributions to the current, and the red, dotted 
curve to the case where the DOS for the ballistic contribution 
corresponds to a conduction band edge 30meV below that of 

the central piece of Bi2Te3 material. Note that the numerically 
calculated value of ∆Tmax obtained for L>>λ approaches the 
experimental value of ~76K for bulk Bi2Te3. The values of µH 
and V for which ∆Tmax was obtained for each value of L/λ are 
shown in Fig. 3 and 4 respectively, with the electrical current 
at maximum temperature difference shown in Fig. 5 as a 
function of L/λ. 

 
Figure 3: (Blue, solid line) The energy gap between the 
conduction band and the quasi-Fermi energy on the hot side 
of the material for which ∆Tmax is obtained. (Red, dotted line) 
The energy gap between the conduction band in the ‘barrier’ 
and the quasi-Fermi energy on the hot side of the material for 
the ‘thermionic’ device. 

 
Figure 4: (Blue, solid line) Voltage for which ∆Tmax is 
obtained for the ‘thermoelectric’ Bi2Te3 device. (Red, dotted 
line) Voltage for which ∆Tmax is obtained for the ‘thermionic’ 
Bi2Te3 device. 

 
Figure 5: (Blue, solid line) Electrical current for which ∆Tmax 
is obtained for the ‘thermoelectric’ Bi2Te3 device. (Red, 
dotted line) Electrical current for which ∆Tmax is obtained for 
the ‘thermionic’ Bi2Te3 device. 



Discussion 
Two conclusions can be drawn from Fig. 2. First of all, it 

can be seen that the maximum temperature difference for 
Bi2Te3 is a function of its length, reaching a maximum at 
about one electron mean free path (~500nm). However, as the 
current at this point is around 1010 Am-2 it would be necessary 
to have very low contact resistances to take advantage of this 
effect. The second conclusion that can be drawn from Fig. 2 
is that if contact resistances can be made sufficiently small 
that operating in the ballistic transport regime is useful, the 
optimum design for a device is a ‘thermionic’ one, where the 
DOS in the reservoirs is much larger than in the central 
‘barrier’ due to the use of a material with a smaller 
conduction band. The reason why this design gives a 
substantial increase in ∆Tmax is that, while the overall 
magnitude of the current remains approximately the same, as 
can be seen from Fig. 5 a significantly higher fraction of the 
current is ballistic, due to the higher DOS in the reservoirs. 
As the fraction of the current that is ballistic does not produce 
ohmic heating of the barrier material, the second term in Eqn. 
(9) becomes smaller. This advantageous effect has been 
previously pointed out in a number of papers, for example 
[15,3,6].  

It is important to point out that Eqn. (8) remains an 
approximation to the real situation in a device in which 
ballistic and diffusive contributions to the electronic current 
are both significant. An important problem is the accurate 
determination of the DOS and dispersion relation in such a 
composite system. Future work will involve the development 
of a more accurate model to describe solid state refrigerators 
and generators designed to operate in the regime where L ≈λ. 

Conclusions 
We have developed a simple transport equation to 

describe the regime where device length is on the order of a 
mean-free path in order to show that the materials parameter 
which limits the cooling power of a solid-state refrigerator is 
not dependent upon its length. We have further shown that the 
usual transport formalisms used to describe thermionic and 
thermoelectric devices reduce to the same form for device of 
length equal to the mean free path. Finally, using Bi2Te3 as an 
example, we have calculated the maximum temperature 
difference obtainable as a function of device length in this 
material, showing that there is a maximum for devices of 
length around an electron mean-free path. We have also noted 
that in this device length regime, an improvement in this 
maximum temperature difference can be obtained by utilizing 
a thermionic design which incorporates lower band-gap 
reservoirs for electrons on either side of the central barrier 
material. 
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