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ABSTRACT

The hydrodynamic model of electron transport
is revisited. By rearranging the governing equa-
tions a new set of equations in terms of the elec-
tron vorticity and internal energy is derived. The
advantage of the new set of equations is the explicit
removal of the electric field from the equations. A
scale analysis of the electron vorticity equation is
performed and the conditions for the observation
of electron vortices in high field transport in sub-
micron devices are predicted.
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1 INTRODUCTION

Electron transport in two-dimensional electron
gas (2DEG) exists in three regimes: ballistic, quasi-
diffusive and diffusive (see Table 1).

The distinction between these three regimes is de-
fined by the relative magnitude of electron-electron
scattering length, electron-phonon scattering length
and the size of the device. The diffusive transport
regime for 2DEG has found application in high
electron mobility transistors. There has been ex-
tensive research to include quantum mechanical ef-
fects [1,2] where the wave nature of electrons plays
an important role in the device operation. To this
end the ballistic transport regime has been stud-
ied extensively with the observation of conductance
quantization, quantum Hall effect and fractional
quantum Hall effect. The intermediate regime of

the quasi-diffusive transport, considered in this study,

has been the focus of less attention. The quasi-
diffusive transport effects in 2DEG have included
shallow water analogy and terahertz sources [3-6].
What distinguishes quasi-diffusive regime is that
the electron temperature is high enough so that
many energy levels are occupied and there is no
conductance quantization or coherent electronic ef-
fects. This regime is beyond the Landauer-Buttiker

formalism. In addition the electron density is high
enough for the electron-electron scattering distance
to be the shortest length scale in the system.

In our previous work [7,8] we focused on the

quasi-diffusive transport through hydrodynamic model

of electron transport. We drove the electron vor-
ticity! transport equations. The electron vorticity
transport equations derived in [8] does not provide
a closed system of equations. One needs another
independent equation involving higher moments of
the Boltzmann transport equation. This could be
in the form of an energy balance equation. We de-
rive an equation for the evolution of the internal
energy of electrons that does not involve the ap-
plied electric field. Then the new set of equations
for the electron vorticity, &, and the internal energy
could potentially substitute the the hydrodynamic
model in terms of the primitive variables.

2 GOVERNING EQUATIONS

We start with the Boltzmann transport equa-
tion for electrons moving with the group velocity u
in an electric field E can be represented as
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where e is the electron charge, m the effective elec-
tron mass, C' the Collision term, f(x,u,t) the dis-
tribution function for the electrons, x the space
variable, and t is time.

The first five moments of the Boltzmann trans-
port equation (1) in the velocity space are the bal-
ance equations for the flux of electron, momentum,
and energy. These equations are represented as fol-
lows:
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1We define electron vorticity as & = V x v, where v is the
translational velocity. Helmholtz’s first theorem states that
a vector (in our case v) is uniquely specified by giving its curl
(vorticity V x v) and its divergence (dilatation V- v) within
a region and its normal component over the boundary.



Table 1. Multiple Scale Electron Transport in Doped Semiconductors

L << leLh L~ Ieph L >> IeLh
L<A L <lee L >>lee
Transport Regime Quantum Ballistic Fluid Fluid Diffusive
Scattering Rare Rare e-e (Many), e-ph (Few) Many
Mode:
Drift / Diffusion
Hydrodynamic Quantum Hydrodynamic
Monte Carlo
Schrod. / Green’s Function Wave
Applications Quantum wells Ballistic Not much Not much Current ICs
Superlattices Transistor explored explored

L = Charaderistic Length Scde of film/device
leph = Average Mean FreePath due to Eledron /Phonon interaction
lee = Average Mean FreePath due to Eledron /Eledroninteradion

A = Wavelength of Eledrons. Typicdly AQle << lepnin the cae of moderately doped semiconductors.
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is the total energy density. Here, n is the electron
concentration, v is the translational velocity, p is
the momentum density mnv, P is the pressure ten-
sor, q is the heat flux, ey is the internal energy, and
Cp, Cp, and Cyy represent moments of C, i.e. mo-
ments of the collision terms. These equations are
supplemented by the Poisson equation (in quasi-
electrostatic limit) for the electric potential ¢

E = Vo, (6)
V- (eVp) = — Zemi — ka1, (7)
where ki := doping concentration and ¢ := di-

electric constant. For devices in which the quasi-
electrostatic approximation is not accurate enough
one needs to use the full Maxwell’s equations (see
e.g. , [9]). We refer to Lundstrom [10] for a deriva-
tion of the hydrodynamic model of electron trans-
port and for more references. A commonly used
simplification for the collision integrals is the re-
laxational time approximation [10]. Although, this
will not affect our technique it might simplifies the
computations in some cases. Therefore, the colli-
sion terms are modeled as

C, = —R, (8)
Co = —p/7p 9)
Cw = —(W - WO)/Twa (10)

where R is the recombination rate and 7, and 7,
are the momentum and energy relaxation times,
respectively. In the following sections we derive an
alternative set of equations for the hydrodynamic
model in terms of electron vorticity and internal
energy.

3 INTERNAL ENERGY
EQUATION

An interesting question is how to make state-
ments about the electron velocity field which do
not involve the electric field. This can be done by
removing the electric field from equations (3) and
(4). First note that
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By substituting from the continuity equation one
can show that
op  mnilv|?
O _ I vl (G~ V- ()
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The evolution equation for the kinetic energy is,
then calculated as
m O|v|?
% '5;' +mvPC, +v - (p-V)v =
—env-E—v.(V-P)—v-Cp, (13)

Substituting —env - E from above into the energy
equation (4) and using the identity

s,
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an equation for the evolution of the internal energy
of electrons can be written as

D(mney) mn|v|?

Dt —|—mneIV-v+V-<v 5 +
V- (VvP)=m|v]*?Cp+v-(p-V)v+
v.-(V-P)—v-C, —V-q+C, (15)



where D o
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is the total derivative. Note that the electric field
is completely removed from this equation. It is in-
teresting to note, however, that the electric field
directly contributes to the kinetic energy of elec-
trons in equation (13).

4 ELECTRON VORTICITY
TRANSPORT EQUATION

The electron vorticity transport equation is ob-
tained by taking curl of the momentum equation
(3) and using equation (2) to obtain

D /3\ . 1
1 Cn

For simplicity the collision terms are modeled us-
ing the relaxational time approximation in equa-
tions (8-10). We also need a constitutional law
(moment closure) for the pressure tensor P. For
simplicity, we consider an inviscid model, where we
assume that the pressure tensor can be represented
in terms of the effective carrier temperature 1" by an
ideal gas law relationship P = nkT1, Here I is the
identity tensor. and k is the Boltzmann constant.
Noting that V x E = 0, the vorticity equation can
be written as

n(%-l-V-V) (%) z(d’-V)v—%V<%) x Vn+
<2§7%> &+RV(%) X V. (18)

There are seven terms involved in the vorticity
equation (18). This equation shows that the ratio
of the electron vorticity to the electron concentra-
tion can change with time due to the terms on the
right-hand side of equation (18). The two terms
on the left hand side form the total derivative of
the vorticity density. The third term represents
the vortex stretching essential for turbulence. The
fourth term is similar to the baroclinic generation
of vorticity in classical fluid mechanics and is due to
the interaction of the principal part of the pressure
tensor P and the density field n. The last three
terms in equation (18) are due to vorticity gener-
ation through the collision terms in the continuity
and momentum equations.

5 SCALING AND ORDER OF
MAGNITUDE ANALYSIS

A comparison of the order of magnitude of each
term in the vorticity equation are carried in this

section to characterize a regime of electron trans-
port with significant electron vorticity transport ef-
fects. We assume that the characteristic scales of
the problem i.e. | velocity, length, electron concen-
tration, temperature and electric field are given by
U, L,ng, Ty, Ey, respectively. Note that the time
scale is given by 7 = L/U. All the dependent
variables are nondimensionalized using these scales.
The nondimensional vorticity equation with the ap-
propriate scaling can be written as
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The three nondimensional numbers that appear
on the right hand side of equation (19) are of fun-
damental importance in our analysis. The nondi-
mensional number ego/mU? of the baroclinic term
is the ratio of the absorbed energy of a free elec-
tron from the external potential ¢y to the average
thermal energy of electrons. One can obtain an
estimate for this nondimensional number by using
equation (3). If assuming that the order of the driv-
ing force .= E, is the same as the acceleration term
%‘t’, and using Ey = ¢o/Lq we obtain mU? = edy.
This implies that the the baroclinic term is of the
same order as the vorticity acceleration and vor-
tex stretching terms. The nondimensional number
L/Ut, = 7/7, in front of the momentum relax-
ation source term is in fact the ratio of the tran-
sit time to the momentum relaxation time. Note
that the recombination rate can be represented as
R = ng/,. Therefore, the nondimensional number
RL/Ung = 7/7 in front of the recombination term
in equation (19) can be interpreted as the ratio of
the transit time in the device to the recombination
relaxation time.

In most cases one can neglect the vorticity gen-
eration by the recombination term; 7 /7, is usually
a very small number. Since the momentum relax-
ation term acts as a sink of electron vorticity, one
expects to observe the transport of electron vortices
in a regime in which this term is smaller than the
other remaining source terms, i.e. , it is of the order
of one or less. A simple calculation of 7/7, for a
semiconductor material with 7, = 1ps (e.g. , GaAs
at low temperatures) show that for easily achiev-
able feature sizes (0.1-1.5 pm) and applied elec-
tric potentials (0.1-1V), the order of magnitude of
this term is around one and significant electron vor-
ticity generation and convection can be observed.
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Figure 1: Contour plot of 7/7, with 7, = 1ps.

This is presented in figure 1. By increasing the
characteristic length of the device while fixing the
electric potential or by decreasing the electric po-
tential for a given device size the contribution of
the momentum relaxation term in damping elec-
tron vortices increases. In order to verify that this
regime of transport falls within the range of hydro-
dynamic flow assumption, the electron mean-free-
path due to electron-electron (Le.) and electron-
phonon (Le pn) scatterings are calculated by a com-
pletely independent calculations. See [7] for details.

6 DISCUSSION

In this study dynamical statements were made
in a form that did not involve the electric field E.
It is interesting to note that although the applied
electric field is the cause of electron motion, we
made mathematical progress best by eliminating it
from the analysis. This is somewhat similar to the
elimination of the pressure from the incompressible
flows by writing the equations in terms of vorticity
(curl of the velocity field). The electron vorticity
equation (17) and the electron internal energy (15)
could substitute the momentum equation (3) and
the energy equation (4) without any explicit refer-
ence to the electric field. The Poisson equation for
the electric potential (6) needs to be solved only if
one needs the distribution of the electric potential
in the device.

A scale analysis of the electron vorticity equa-
tion is performed and the relative order of mag-
nitude of each source of vorticity is found. Our
analysis predicts conditions for the observation of
electron vortices in high field transport in submi-
cron devices. Our investigation is set in the regime
of validity of hydrodynamic models, i.e. , the char-
acteristic length scales are so that the quantum me-
chanical effects can be neglected and the electron-

electron scattering is fast enough so that one cannot
make the independent electron approximation. In
order to observe electron vortices, electron transit
time in a device should be of the same order as the
momentum relaxation time. In addition, the device
geometry, boundary effects and material parame-
ters should be chosen appropriately.
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