Close

Publications

Journal Publications

        Accepted for publication

  1. “Voltage equilibration for reactive atomistic simulations of electrochemical processes”, Nicolas Onofrio, and Alejandro Strachan, Journal of Chemical Physics.
  2. “Mechanical response of nanocrystalline platinum via molecular dynamics: size effects in bulk vs. thin film samples” Hojin Kim and Alejandro Strachan, Modeling and Simulations in Materials Science and Engineering.
  3. “Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale", Mitchell A. Wood, Mathew J. Cherukara, Edward M. Kober, and Alejandro Strachan, Journal of Physical Chemistry C. DOI: 10.1021/acs.jpcc.5b05362.
  4. “Model form uncertainty versus intrinsic atomic variability in amorphous silicon oxides and nitrides”, Nathan Anderson, Ravi Vedula, Alejandro Strachan, Computational Materials Science.
  5. “Role of Direct Electron-Phonon Coupling across Metal-Semiconductor Interfaces in Thermal Transport via Molecular Dynamics”, Keng-hua Lin and Alejandro Strachan, Journal of Chemical Physics.
  6. “Molecular dynamics simulations of the reaction mechanism in Ni/Al reactive intermetallics”, Mathew Cherukara, Timothy Weihs, Alejandro Strachan, Acta Materialia.

      2015

  1. “Role of grain size on the martensitic transformation and ultra-fast superelasticity in shape memory alloys",  R. Morrison, Mathew J. Cherukara, Hojin Kim, Alejandro Strachan, Acta Materialia 95,  37-43 (2015). DOI: 10.1016/j.actamat.2015.05.015.
  2. “Stability and migration of small copper clusters in amorphous dielectrics", David M Guzman, Nicolas Onofrio, Alejandro Strachan, Journal of Applied Physics 117 (19), 195702 (2015). DOI: 10.1063/1.4921059.
  3. “Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: technology limit from atomic simulations", Ravi Vedula, Saumitra Mehrotra, Kubis Tillmann, Michael Povolotskyi, Gerhard Klimeck, Alejandro Strachan, Journal of Applied Physics 117, 174312 (2015). DOI: 10.1063/1.4919091
  1. “PUQ: a code for non-intrusive uncertainty propagation in computer simulations", Martin Hunt, Benjamin Haley, Michael McLennan, Marisol Koslowski, Jayathi Murthy, Alejandro Strachan, Computer Physics Communications, 194, 97–107 (2015). DOI: 10.1016/j.cpc.2015.04.011.
  1. “Mesoscale simulations of shockwave energy dissipation via chemical reactions", Edwin Antillon and Alejandro Strachan, Journal of Chemical Physics. 142 , 084108 (2015). DOI: 10.1063/1.4908309
  2. “Atomic origin of ultrafast resistance-switching in nanoscale electrometallization cells”, Nicolas Onofrio, David Guzman, Alejandro Strachan, Nature Materials. 14, 440–446 (2015). DOI: 10.1038/nmat4221
  3. “Molecular Scale Simulations On Thermoset Polymers: A Review”, Chunyu Li and Alejandro Strachan, Journal of Polymer Science: Polymer Physics. DOI: 10.1002/polb.23489.

2014

  1. “Engineering curvature in graphene ribbons using ultra-thin polymer films”, Chunyu Li, Marisol Koslowski and Alejandro Strachan, Nano Letters, 14 7085–7089 (2014). DOI: 10.1021/nl503527w
  2. “Shock loading of granular Ni/Al composites. Part 1: mechanics of loading,” Mathew J. Cherukara, Timothy C. Germann, Edward M. Kober and Alejandro Strachan, J. Phys. Chem. C. J. Phys. Chem. C. 118, 26377–26386 (2014). DOI: 10.1021/jp507795w
  3. “High-temperature emissivity of silica, zirconia and samaria from ab initio simulations: role of defects and disorder”, Stas M. Avdoshenko and Alejandro Strachan, Modeling and Simulation in Materials Science and Engineering, 22 075004 (2014). 
  4. “Prediction of the chemical and thermal shrinkage in a thermoset polymer” Oleksandr G. Kravchenko, Chunyu Li, Alejandro Strachan, Sergii G. Kravchenko and R. Byron Pipes, Journal of Composites, Part A. 66, 35-43  (2014). DOI: 10.1016/j.compositesa.2014.07.002.
  5. “Mesodynamics with implicit degrees of freedom”, Keng-Hua Lin, Brad Lee Holian, Timothy C. Germann, and Alejandro Strachan, Journal of Chemical Physics.141, 064107 (2014). DOI: 10.1063/1.4891308.
  6. "Uncertainty Quantification in Materials Modeling", Andrew Dienstfrey,  Frederick R. Phelan Jr., Stephen Christensen, Alejandro Strachan, Fadil Santosa, Ronald Boisvert, JOM 66, 1342-1344 (2014). DOI: 10.1007/s11837-014-1049-1.
  7. “Role of Strain on Electronic and Mechanical Response of Semiconducting Transition-Metal Dichalcogenide Monolayers: an ab-initio study”, David Guzman and Alejandro Strachan, Journal of Applied Physics, 141, 064107 (2014). DOI: 10.1063/1.4883995.
  8. “Role of atomic variability and mechanical constraints on the martensitic phase transformation of a model disordered shape memory alloy via molecular dynamics”, Keith Morrison, Mathew Cherukara, and Alejandro Strachan, Acta Materialia 69 30–36 (2014). 
  9. “Material property prediction of thermoset polymers by molecular dynamics simulations”, Chunyu Li, Eric Coons, and Alejandro Strachan. Acta Mechanica, 225, 1187–1196 (2014). DOI: 10.1007/s00707-013-1064-2.
  10. “Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure –induced endothermic chemical reactions”, Edwin Antillon, Kiettipong Banlusan and Alejandro Strachan. Modeling and Simulation in Materials Science and Engineering, 22 025027 (2014). DOI: 10.1016/j.actamat.2014.02.001.
  11. “Coupled Thermal and Electromagnetic Induced Decomposition in the Molecular Explosive αHMX; A Reactive Molecular Dynamics Study”, Mitchell A. Wood, Adri C. T. van Duin and Alejandro Strachan, Journal of Physical Chemistry A, 118, 885-895 (2014). DOI: 10.1021/jp406248m.

2013

  1. “Limit for thermal transport reduction in Si nanowires with nanoengineered corrugations”, Sean Sullivan, Keng-hua Lin, Stanislav Avdoshenko, and Alejandro Strachan, Applied Physics Letters, 103 243107 (2013).
  2. “Role of atomic variability in dielectric charging: a first principles-based multiscale modeling study”, R. P. Vedula, S. Palit, M. A. Alam, and A. Strachan, Physical Review B, 88, 205204 (2013). DOI: 10.1103/PhysRevB.88.205204
  3. “Micro-RVE Modeling of Mechanistic Response in Porous Intermetallics subject to Weak and Moderate Impact Loading”, A. R. Nair, B. A. Mason, L. J. Groven, S. F. Son, A. Strachan, A. M. Cuitiño, International Journal of Plasticity, 51, 1-32 (2013)
    DOI: 10.1016/j.ijplas.2013.06.009
  4. “Multiscale contact mechanics model for RF MEMS switches with quantified uncertainties”, Hojin Kim, Nurul Huda Shaik, Xin Xu, Arvind Raman, Alejandro Strachan. Modelling and Simulation in Materials Science and Engineering, 21, 085002 (2013).
    DOI: 10.1088/0965-0393/21/8/085002
  5. Molecular dynamic simulation of tip-polymer interaction in tapping-mode AFM” Nicolas Onofrio, Gabriela N. Venturini and Alejandro Strachan. Journal of Applied Physics, 114, 094309 (2013) DOI: 10.1063/1.4820256   
  6. “Molecular dynamics simulation of PMMA slabs: role of annealing conditions”, Yae Ji Kim, Keng-Hua Lin and Alejandro Strachan, Modeling and Simulation in Materials Science and Engineering, 21, 065010 (2013) DOI: 10.1088/0965-0393/21/6/065010
  7. “Functional derivatives for uncertainty quantification for error estimation and minimization via optimal high-fidelity simulations”, A. Strachan, S. Mahadevan, V. Hombal and L. Sun, Modelling Simulation Materials Science Engineering, 21, 065009 (2013). DOI: 10.1088/0965-0393/21/6/065009
  8. “Lectures and Simulation Laboratories to Improve Learners’ Conceptual Understanding”, Alejandra Magana, Sean Brophy and Alejandro Strachan, Advances in Engineering Education, 3, 1-17 (2013).  http://advances.asee.org/vol03/issue03/04.cfm
  9. “Shape memory metamaterials with tunable thermo-mechanical response via hetero-epitaxial integration”, K. Guda Vishnu and A. Strachan, Journal of Applied Physics, 113, 103503 (2013).  DOI: 10.1063/1.4794819
  10. “Phonon thermal transport outside of local equilibrium in nanowires via molecular dynamics” Ya Zhou and Alejandro Strachan, Journal of Chemical Physics, 138, 124704 (2013). DOI: 10.1063/1.4793530
  11. “Thermal Transport in SiGe Superlattice Thin Films and Nanowires: Effects of Specimen and Periodic Lengths”, Keng-Hua Lin* and A. Strachan, Physical Review B, 87, 115302 (2013). DOI: 10.1103/PhysRevB.87.115302   
  12. “Molecular dynamics simulations on cyclic deformation of an epoxy thermoset”, C. Li,* E.   Jaramillo, and A. Strachan, Polymer, 54, 881-890 (2013). DOI: 10.1016/j.polymer.2012.12.007

 

2012

  1. “Molecular dynamics study of dynamical contact between a nanoscale tip and substrate for AFM experiment”, Hojin Kim, Gabriella Venturini and Alejandro Strachan, Journal of Applied Physics, 112, 094325 (2012). DOI: 10.1063/1.4762016   
  2. “Atomistic Simulations on Multilayer Graphene Reinforced Epoxy Composites”, Chunyu Li, Andrea Browning, Stephen Christensen and Alejandro Strachan, Composites Part A,43, 1293-1300 (2012). DOI: 10.1016/j.compositesa.2012.02.015
  3. “Defect level distributions and atomic relaxations induced by charge trapping in amorphous silica”, Nathan L. Anderson, Ravi Pramod Vedula, Peter A. Schultz, R. M. Van Ginhoven, and Alejandro Strachan, Applied Physics Letters, 100, 172908: 1-3 (2012). DOI: 10.1063/1.4707340
  4. Effect of topological disorder on structural, mechanical, and electronic properties of amorphous silicon nitride: An atomistic study, Ravi Pramod Vedula, Nathan Anderson, and Alejandro Strachan, Physical Review B, 85, 205209 (2012). DOI: 10.1103/PhysRevB.85.205209
  5. “High-energy amorphous intermolecular reactive composites” Karthik Guda Vishnu, Mathew Cherukara, Hojin Kim and Alejandro Strachan, Physical Review B, 85, 184206 (2012). DOI: 10.1103/PhysRevB.85.184206
  6. “Estimating in-plane Young’s modulus of polycrystalline films in MEMS”, Patrick R. Cantwell, Hojin Kim, Matthew M. Schneider, Hao-Han Hsu, Dmitrios Peroulis, Eric A. Stach, Alejandro Strachan, Journal of Microelectromechanical Systems, 21, 840-849 (2012). DOI: 10.1109/JMEMS.2012.2191939
  7. “Molecular Dynamics Simulations and Experimental Studies of the Thermomechanical Response of an Epoxy Thermoset Polymer”, Chunyu Li, Grigori Medvedev, Eun-Woong Lee, Jaewoo Kim, James Caruthers, Alejandro Strachan, Polymer, 53, 4222-4230 (2012). DOI: 10.1016/j.polymer.2012.07.026
  8. “Tailored Reactivity of Ni+A1 Nanocomposites: Microstructural Correlations”, Khachatur Manukyan, Aaron Mason, Lori Groven, Ya-Cheng Lin, Mathew Cherukara, Steven Son, Alejandro Strachan , Alexander Mukasyan, The Journal of Physical Chemistry C, 116, 21027-21038 (2012). DOI: 10.1021/jp303407e
  9. “Role of nanostructure on reaction and transport in Ni/Al intermolecular reactive composites”, Mathew Cherukara, Karthik Guda Vishnu, Alejandro Strachan, Physical Review B, 86, 075470 (2012). DOI: 10.1103/PhysRevB.86.075470   
  10. “Size effects in NiTi from density functional theory calculations”, Karthik Guda Vishnu and Alejandro Strachan, Physical Review B 85, 014114 (2012). DOI: 10.1103/PhysRevB.85.014114
  11. “Energy-based yield criterion for PMMA from large-scale MD simulations”, Eugenio Jaramillo, Nathaniel Wilson, Stephen Christensen, Jonathan Gosse, and Alejandro Strachan, Physical Review B, 85, 024114 (2012). DOI: 10.1103/PhysRevB.85.024114

 

2011

  1. "Effect of thickness on the thermo-mechanical response of free-standing thermoset nanofilms from molecular dynamics", Chunyu Li and Strachan, Alejandro, Macromolecules, 44, 9448–9454 (2011). DOI: 10.1021/ma201927n
  2. “Strain engineering via amorphization and recrystallization in Si/Ge heterostructures”, Yumi Park and Alejandro Strachan, Physical Review B 84, 125412 (2011). DOI: 10.1103/PhysRevB.84.125412
  3. “Uncertainty propagation in a multiscale model of single crystal plasticity”, M. Koslowski and A. Strachan, Reliability Engineering and System Safety 96, 1161-1170, (2011). DOI: 10.1016/j.ress.2010.11.011
  4. “Role of surface orientation on ALD Al2O3/GaAs interface structure and Fermi level pinning: a DFT study”, Ganesh Hegde, Gerhard Klimeck, and Alejandro Strachan, Applied Physics Letters, 99, 093508 (2011). DOI: 10.1063/1.3624897
  5. “Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA” Chunyu Li and Alejandro Strachan, Polymer 52, 2920-2928 (2011). DOI: 10.1016/j.polymer.2011.04.041
  6. “First-Principles Investigation of Low Energy E' Center Precursors in Amorphous Silica” Nathan L. Anderson, Ravi Pramod Vedula, Peter A. Schultz, R.M. Van Ginhoven, and Alejandro Strachan, Physical Review Letters, 106, 206402 (2011). DOI: 10.1103/PhysRevLett.106.206402
  7. “Thermal decomposition of condensed-phase nitromethane from molecular dynamics using the reactive force field ReaxFF”, Si-ping Han, Adri C. T. van Duin, William A. Goddard, III, and Alejandro Strachan, Journal of Physical Chemistry B, 115, 6534-6540 (2011). DOI: 10.1021/jp1104054
  8. “Effect of core energy on mobility in a continuum dislocation model”, Dong Wook Lee, Hojin Kim, Alejandro Strachan, and Marisol Koslowski, Phys. Rev. B 83, 104101 (2011). DOI: 10.1103/PhysRevB.83.104101
  9. “Molecular dynamics characterization of the contact between clean metallic surfaces with nanoscale asperities”, H. Kim and A. Strachan, Physical Review B 83, 024108 (2011). DOI: 10.1103/PhysRevB.83.024108   

 

2010

  1. “Molecular Simulations of Cross-linking Process of Thermosetting Polymers”, C. Li and A. Strachan, Polymer 51, 6058-6070 (2010). DOI: 10.1016/j.polymer.2010.10.033
  2. “Molecular Dynamics Simulations of Strain Engineering and Thermal Transport in Nanostructured Materials”, Y. Park, Y. Zhou, J. Jhaveri, and A. Strachan, Computing In Science & Engineering 12 36-42 (2010). DOI: 10.1109/MCSE.2010.44
  3. “Cyber-Enabled Simulations in Nanoscale Science and Engineering INTRODUCTION”, Strachan A, Klimeck G, Lundstrom M, Computing In Science & Engineering, 12 12-17 (2010). DOI:  10.1109/MCSE.2010.38
  4. “Nanoscale metal-metal contact physics from molecular dynamics: the strongest contact size”, H. Kim and A. Strachan, Physical Review Letters 104, 215504 (2010).  DOI: 10.1103/PhysRevLett.104.215504   
  5. “Phase stability and transformations in NiTi from density functional theory calculations”, K. Guda Vishnu and A. Strachan, Acta Materialia, 58, 745–752 (2010). 1st Tier. DOI: 10.1016/j.actamat.2009.09.019   
  6. “Size effects on martensitic microstructure in Zr nanowires via molecular dynamics”, A. Thompson and A. Strachan, Physical Review B, 81 085429   (2010). DOI: 10.1103/PhysRevB.81.085429   
  7. (2009).

 

2009

  1. “Thermal conduction in molecular materials using coarse grain dynamics: role of mass diffusion and quantum corrections for MD simulations”, Y. Zhou and A. Strachan, Journal of Chemical Physics 131 234113 (2009). 1st Tier. DOI: 10.1063/1.3272028   
  2. “Strain relaxation in Si/Ge/Si nanoscale bars from molecular dynamics simulations”, Y Park, M. Aktuga, A. Grama and A. Strachan, Journal of Applied Physics, 106, 034304-1-6 (2009). DOI: 10.1063/1.3168424   
  3. “Coarse grain modeling of spall failure in molecular crystals: role of intra-molecular degrees of freedom” K. Lynch,* A. Thompson, and A. Strachan, Modeling and Simulation in Materials Science and Engineering, 17, 015007-1-13 (2009). DOI: 10.1088/0965-0393/17/1/015007   

 

2007-2008

  1. “Structures and energetics of silicon nanotubes from molecular dynamics and density functional theory”, A. Palaria, G. Klimeck, and A. Strachan, Physical Review B, 78, 205315-1-5 (2008). DOI: 10.1103/PhysRevB.78.205315   
  2. “Phonon Thermal Conductivity in Nanolaminated Composite Metals via Molecular Dynamic”, Y. Zhou, B. Anglin, and A. Strachan, Journal of Chemical Physics, 127, 184702-1-11 (2007). DOI: 10.1063/1.2802366   
  3. “Melting and alloying of Ni/Al nanolaminates induced by shock loading: A molecular dynamics simulation study”, S. Zhao, T. C. Germann, and A. Strachan, Physical Review B, 76, 104105-1-5 (2007). DOI: 10.1103/PhysRevB.76.104105   
  4. “Molecular dynamics simulation of dynamical response of perfect and porous Ni/Al nanolaminates under shock loading”, S. Zhao, T. C. Germann, and A. Strachan, Physical Review B, 76, 014103-1-6 (2007). DOI: 10.1103/PhysRevB.76.014103   
  5. “Atomic-Level View of Inelastic Deformation in a Molecular Crystal”, E. Jaramillo, T. D. Sewell, and A. Strachan, Physical Review B, 76, 064112-1-6 (2007). DOI: 10.1103/PhysRevB.76.064112   
  6. “Heteroepitaxial integration of metallic nanowires: transition from coherent to defective interfaces via molecular dynamics”, A. Arumbakkam, E. Davidson, and A. Strachan, Nanotechnology, 18, 345705-1-7 (2007). DOI: 10.1088/0957-4484/18/34/345705   
  7. “Molecular dynamics characterization of the response of Ni/Al nanolaminates under dynamical loading”, S. Zhao, Timothy C. Germann, and Alejandro Strachan, Journal of Propulsion and Power, 23, 693-697 (2007). DOI: 10.2514/1.25727
  8. “Reply to "Comment on 'Melting dynamics of superheated argon: Nucleation and growth'"”, S-N. Luo, L. Zheng, A. Strachan, D. Swift, Journal of Chemical Physics, 126, 187102 (2007). DOI: 10.1063/1.2732744   
  9. “Melting dynamics of superheated argon: Nucleation and growth”, S-N. Luo, L. Zheng, A. Strachan, D. Swift, Journal of Chemical Physics, 126, 34505-1-7 (2007).  DOI: 10.1063/1.2424715   

 

2005-2006

  1. “Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates”, S. Zhao, T. C. Germann, and A. Strachan, Journal of Chemical Physics, 125, 164707-1-8 (2006). DOI: 10.1063/1.2359438   
  2. “Vibrational density of states and Lindemann melting law”, S-N. Luo, A. Strachan, D. Swift, Journal of Chemical Physics, 122, 194709-1-5 (2005).  DOI: 10.1063/1.1902948   
  3. “Deducing Solid-liquid interfacial energy of H2O at 0-0.3 GPa deduced from supercooling experiments”, S-N. Luo, A. Strachan, D. Swift, Modelling and Simulation Materials Science and Engineering, 13, 321-328 (2005). DOI: 10.1088/0965-0393/13/3/002
  4. “Large electrostrictive strain at Gigahertz frequencies in a PVDF nano-actuator: computational device design”, A. Strachan and W. A. Goddard, Applied Physics Letters, 86, 83103-1-3 (2005). DOI: 10.1063/1.1862343   
  5. “Thermal decomposition of RDX from reactive molecular dynamics”, A. Strachan, E. Kober, A. C. T. van Duin, J. Oxgaard, and W. A. Goddard, Journal of Chemical Physics, 122, 54502-1-10 (2005). DOI: 10.1063/1.1831277   
  6. “Energy exchange between mesoparticles and their internal degrees of freedom”, A. Strachan and B. L. Holian, Physical Review Letters, 94, 014301-1-4 (2005). DOI: 10.1103/PhysRevLett.94.014301   

 

2003-2004

  1. “Density functional theory and molecular dynamics studies of the energetics and kinetics of Electroactive polymers:  PVDF and P(VDF-TrFE)”, H. Su, A. Strachan, and W. A. Goddard, III, Physical Review B, 70, 064101-1-8 (2004). DOI: 10.1103/PhysRevB.70.064101   
  2. “Properties of Asphaltenes Through Computer Assisted Structure Elucidation and Atomistic Simulations. 1. Bulk Arabian Light Asphaltenes”, M. S. Diallo, A. Strachan, J. L. Faulon, and W. A. Goddard III , Petroleum Science and Technology, 22, 877-899 (2004). DOI: 10.1081/LFT-120040254   
  3. “Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation dynamics: application to bcc tantalum”, G. Wang, A. Strachan,* T. Cagin and W. A. Goddard III, Modelling and Simulation in Materials Science and Engineering, 12, S371-S389 (2004). DOI: 10.1088/0965-0393/12/4/S06   
  4. “First principles force field for metallic tantalum”, A. Strachan, T. Cagin, O. Gülseren, S. Mukherjee, R. E. Cohen and W. A. Goddard III, Modelling and Simulation in Materials Science Engineering, 12, S445-S459 (2004). DOI: 10.1088/0965-0393/12/4/S10   
  5. “Non-equilibrium melting and crystallization of a model Lennard-Jones System”, S-N. Luo, A. Strachan, D. Swift, Journal of Chemical Physics, 120, 11640-1-10 (2004). DOI: 10.1063/1.1755655   
  6. “Normal modes and frequencies from covariances in molecular dynamics or Monte Carlo simulations”, A. Strachan, Journal of Chemical Physics, 120, 1-4 (2004). DOI: 10.1063/1.1635364   
  7. “Atomistic simulations of kinks in 1/2a < 111 > screw dislocations in bcc tantalum”, G. Wang, A. Strachan, T. Cagin, W. A. Goddard, Physical Review B, 68, 224101-1-15 (2003). DOI: 10.1103/PhysRevB.68.224101   
  8. “Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments”, S-N. Luo, T. Ahrens, T. Cagin, A. Strachan, W. A. Goddard, D. Swift, Physical Review B, 68, 134206-1-11 (2003). DOI: 10.1103/PhysRevB.68.134206   
  9. “Shock waves in high-energy materials: The initial chemical events in nitramine RDX”, A. Strachan, A. van Duin, D. Chakraborty, S. Dasgupta, and W. A. Goddard, Physical Review Letters, 91, 098301-1-4 (2003). DOI: 10.1103/PhysRevLett.91.098301   
  10. “Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum”, D. Segall, A. Strachan, W.A. Goddard, III, S. Ismail-Beigi, T. A. Arias, Physical Review B, 68, 014104-1-11 (2003). DOI: 10.1103/PhysRevB.68.014104
  11. “ReaxFFSiO reactive force field for silicon and silicon oxide systems”, A. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W. A. Goddard, III, Journal of Physical Chemistry A, 107, 3803-1-9 (2003). DOI: 10.1021/jp0276303   
  12. “Role of core polarization curvature of screw dislocations in determining the Peierls stress in bcc Ta: A criterion for designing high-performance materials”, G. Wang, A. Strachan, T. Cagin, W. A. Goddard, Physical Review B, 67, 140101-1-4 (2003). DIO: 10.1103/PhysRevB.67.140101   

 

2001-2002

  1. “Molecular Dynamics Modeling of Stishovite”, S-N. Luo, T. Cagin, A. Strachan, W. A. Goddard, III and T. J. Ahrens, Earth and Planetary Science Letters, 202, 147-157 (2002). DOI: 10.1016/S0012-821X(02)00749-5
  2. “Kinks in a/2<111> screw Dislocation in Ta”, Guofeng Wang, A. Strachan, T. Cagin and W. A. Goddard III, Journal of Computer Aided Materials Design, 8, 117-125 (2002). DOI: 10.1103/PhysRevB.68.224101
  3. “A Multiscale Approach for Modeling Crystalline Solids” A. Cuitino, L. Stainier, G. Wang, A. Strachan, T. Cagin, W. A. Goddard, III and M. Ortiz, Journal of Computer Aided Materials Design, 8, 127-149 (2002). DOI: 10.1023/A:1020012431230
  4. “Crack propagation in a Tantalum nano-slab”, A. Strachan, T. Cagin and W. A. Goddard III, Journal of Computer Aided Materials Design, 8, 151-159 (2002). DOI: 10.1023/A:1020046914392
  5. “Accurate Calculations of the Peierls Stress in Small Periodic Cells”, D. E. Segall, T. A. Arias, A. Strachan, and W. A. Goddard, III, Journal of Computer Aided Materials Design, 8, 161-172(2002). DOI: 10.1023/A:1020001527113
  6. “Ab-initio Studies of Pressure Induced Phase Transitions in BaO”, M. Uludogan, T. Cagin, A. Strachan, and W. A. Goddard, III, Journal of Computer Aided Materials Design, 8, 193-202 (2002). DOI: 10.1023/A:1020085006640
  7. “Large scale atomistic simulations of screw dislocation structure, annihilation and cross-slip in FCC Ni”, Y. Qi, A. Strachan, T Cagin, and W. A. Goddard, III, Materials Science and Engineering A 309, Sp. Iss. SI, 156-159 (2001). DOI: 10.1016/S0921-5093(00)01716-0
  8. “Molecular dynamics simulations of 1/2 a<111> screw dislocation in Ta”, G. Wang, A. Strachan, T Cagin, and W. A. Goddard, III, Materials Science and Engineering A, 309, Sp. Iss. SI, 133-137 (2001). DOI: 10.1016/S0921-5093(00)01739-1
  9. Reply to "Comment on 'Phase diagram of MgO from density-functional theory and molecular-dynamics simulations' ", A. Strachan, T. Cagin, and W. A. Goddard, Physical Review B  63,  096102   (2001). DOI: 10.1103/PhysRevB.63.096102   
  10. “Critical behavior in spallation failure of metals”, A. Strachan, T. Cagin, and W. A. Goddard, III, Physical Review B, 63, 060103-1-4 (2001). DIO: 10.1103/PhysRevB.63.060103

 

1996-2000

  1. “Phase diagram of MgO from density-functional theory and MD simulations”, A. Strachan, T. Cagin, and W. A. Goddard, Physical Review B, 60, 15084-15093 (1999). DOI: 10.1103/PhysRevB.60.15084   
  2. “Fragmentation of hot drops”, C. O. Dorso and A. Strachan, Computer Physics Communications 121, Sp. Iss. SI, 240-243 (1999). DOI: 10.1016/S0010-4655(99)00321-5
  3. “Temperature and energy partition in fragmentation”, A. Strachan and C. O. Dorso, Physical Review C, 59, 285-294 (1999). DOI: 10.1103/PhysRevC.59.285   
  4. “Caloric curve in fragmentation”, A. Strachan and C. O. Dorso, Physical Review C, 58, R632-R636 (1998). DOI: 10.1103/PhysRevC.58.R632   
  5. “Statistical thermodynamics of cluster phase transitions” A. Strachan and C. O. Dorso, Physica A, 257, 526-529 (1998). DOI: 10.1016/S0378-4371(98)00187-3
  6. “Time scales in fragmentation”, A. Strachan and C. O. Dorso, Physical Review C, 55, 775-787 (1997). DOI: 10.1103/PhysRevC.55.775   
  7. “Fragment recognition in molecular dynamics”, A. Strachan and C. O. Dorso, Physical Review C, 56, 995-1001 (1997). DOI: 10.1103/PhysRevC.56.995   
  8. “Onset of fragment formation in periodic expanding Systems”, C. O. Dorso, A. Strachan, Physical Review B, 54, 236-243 (1996). DOI: 10.1103/PhysRevB.54.236.

Conference Proceedings

 

1.“Molecular dynamics simulations of shock-induced chemical mechanical, and thermal processes in Ni/Al nanolaminates” S. Zhao, *T.C. Germann, A. Strachan, A. AIP Conference Proceedings, 845, 593-596 (2006). Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Jul. 31 – Aug. 05, 2005 Baltimore, MD

2.“Reactive force fields based on quantum mechanics for applications to materials at extreme conditions”, A.C.T. van Duin,* S. V. Zybin, K. Chenoweth, L. Zhang, S-P. Han, A. Strachan, and W. A. Goddard, AIP Conference Proceedings, 845, 581-1-4 (2006). Conference of the American-Physical-Society-Topical-Group-on-Shock-Compression-of-Condensed-Matter, JUL 31-AUG 05, 2005 Baltimore, MD.

3.“Initial chemical events in the energetic material RDX under shock loading: role of defects”, A. Strachan,* A. C. T. van Duin, and W. A. Goddard, III, Shock Compression of Condensed Matter-2003, Proceedings of the APS Topical Group on Shock Compression of Condensed Matter, 706, 895-1-4.

4.“The ReaxFF polarizable reactive force fields for molecular dynamics simulation of ferroelectrics”, W. A. Goddard, III, Qingsong Zhang;* M. Uludogan, A. Strachan, T. Cagin, AIP Conference Proceedings, 626, 45-1-11 (2002). Conference: Fundamental Physics of Ferroelectrics 2002, 3-6 Feb. 2002, Washington, DC, USA.

5.“Fragment formation in finite and infinite expanding systems”, C. O. Dorso* and A. Strachan, Revista Mexicana de Fisica. 41, 96 (1995). XVIII Symposium on Nuclear Physics, JAN 04-07, 1995 Oaxtepec, Mexico.