Thermal Radiation Modeling Workshop For SPIE Optics+Photonics 2017

Zhiguang Zhou¹, Enas Sakr¹, Tianran Liu², Wendy Lin³, Evan Schlenker¹, Hao Tian¹, Cindy Karina⁴, **Peter Bermel**¹

¹ Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA

- ² Electrical Engineering, Princeton University, Princeton, NJ, USA
- ³ Electrical Engineering and Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

⁴ Swiss Federal Institute of Technology (ETH-Zurich), Zurich, Switzerland

Brief History of Thermal Energy Harvesting

Year	Discovery	Significance	Innovators
1712	Atmospheric Engine	Pumping water out of mines	Thomas Newcomen
1776	Steam Engine	Mechanical workhorse of industrial revolution	James Watt
1870	Kirchoff's law of thermal radiation	Establishing centrality of blackbody in thermal radiation	Gustav Kirchoff
1879	Stefan-Boltzmann law	Calculating total radiated power	Josef Stefan
1900	Planck's law of blackbody radiation	Calculating radiation power spectrum	Max Planck
1956	Thermophotovoltaics	Converting thermal radiation into electricity	Henry Kolm
1960	Laser	Provides intense, monochromatic optical power	Schawlow & Townes
1962	Solar Cell Efficiency Limits	Provided a target for PV and TPV research	Shockley & Queisser
1979	Gallium antimonide cell	Provides suitable bandgap for TPV	Lew Fraas
2014	Photonic radiative cooling	Provides nearly ideal radiative cooling	Shanhui Fan

Key Concepts from Prior Research

- Carnot efficiency of heat engines
- Planck blackbody limit: centrality of blackbody in thermal radiation
- Shockley-Queisser limit of photovoltaics
- Additional losses at every step in practice

Energy Landscape Today

Source: LLNL 2014. Data is based on DOE/EIA-0035(2014-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed, Distude electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency of electricity and commercial sectors 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MH-410527

61% of raw energy wasted in 2013!

ີ ທີ່ nanoHUB

Too much parasitic loss in commonly used devices, like ovens and light bulbs

Thermal image of an incandescent bulb. Much of the energy is emitted as infrared. The IR heats the glass, which	Tel Losse Net Net Net Net Net Stored heat Colling water loss and/or conveyor		
conducts the heat to the surrounding air, producing convection.	Overall luminous efficiency		
40 W tungsten incandescent	1.9%		
60 W tungsten incandescent	2.1%		
100 W tungsten incandescent	2.6%		
glass halogen	2.3%		
quartz halogen	3.5%		

The chart above lists values of overall luminous efficacy and efficiency for several types of general service, 120volt, 1000-hour lifespan incandescent bulb

14 Grand Challenges for Engineering in the 21st Century					
Home Ch	allenges Make Solar Energy Economical				
KE SOLAR ENERGY NOMICAL	Make Solar Energy Economical				
Department of Energy Solar rgy Technologies Program	Marke Solar Energy Leonomieur				
nments on "Make Solar rgy Economical"					
NAE Grand Challenges Scholars Program					
	14 Grand Challenges for Engineering in the 21st Century Home Challenges Solar ENERGY NOMICAL Department of Energy Solar rgy Technologies Program Imments on "Make Solar rgy Economical" APPE THE FUTURE NAE Grand Challenges Scholars Program Vest Scholars Vest Scholars				

Make Solar Energy Economical

- Key Challenges:
 - Novel earth-abundant materials
 - Reliable, low-cost packaging techniques
 - Energy storage (daily and seasonal)
- How simulations can help:
 - Provide predictions of performance of realistic, novel PV materials (e.g., using DFT)
 - Predict and optimize lifetime energy production (e.g., using ADEPT)
 - Design electrolyzers and fuel cells (e.g., using FEM multi-physics)

Lewis, N.S. 2007. Toward Cost-Effective Solar Energy Use. Science 315(5813): 798-801. DOI: 10.1126/science.1137014

WHAT IS NANOHUB AND S4?

- An open-access science gateway for cloud-based simulation tools and resources in nanoscale science and technology.
- Stanford Stratified Structure Solver (S4) is a frequency domain code to solve layered periodic structures.
- An input control file scripted in LUA outputs Absorption Spectrum using S-matrix Method

enabled by the HUBzero platform for simulation, learning, and collaboration a major resource for computational nanotechnology

Total Users

SETUP FOR HANDS-ON WORK

- Wireless ESSID: UNITE-9980; password: 78841109
- Nanohub login:
 - <u>https://nanohub.org/</u>
 - Create account via 'Signup' link in upper right
 - Login with institutional login, Facebook, or LinkedIn
- Bug reporting site
- https://nanohub.org/
- (upper right) help link
- Get the hands-on files
- https://nanohub.org/groups/thermalradiation

August 6, 2017

Step 1: Reach Maximum Temperature from Solar Heat

Key tool(s):

S4sim

Selective Absorber: Maximum Thermal Transfer Efficiency

nanoHUB

Thermal Transfer Efficiency $\eta_t = B\overline{\alpha} - \frac{\overline{\epsilon}\sigma T^4}{CI}$ Spectrally-averaged absorptivity $\overline{\alpha} = \frac{1}{I} \int_{0}^{\infty} d\lambda \int_{0}^{\theta_c} d\theta \left[\epsilon(\lambda,\theta)\sin 2\theta \frac{dI}{d\lambda}\right]$

Spectrally-averaged emissivity $\overline{\epsilon} = \frac{1}{\sigma T^4} \int_0^\infty d\lambda \, \int_0^{\pi/2} d\theta \left\{ \frac{2hc^2 \epsilon(\lambda, \theta) \sin 2\theta}{\lambda^5 \left[e^{hc/\lambda kT} - 1\right]} \right\}$

P. Bermel et al., Ann. Rev. Heat Transfer (2012).

Best Commercial Selective Solar Absorbers: T=400 K (1 sun)

Selective Solar Absorbers at T=1000 K (100 suns)

nanoHUB

4 Selective Absorber Designs

5 Layers

Thickness (nm)

D. Chester et at., Opt. Express 19, A245 (2011).

150

200

250

100

50

P. Bermel et al., Energy Environ. Sci. (2016)

SPIE Optics+Photonics, San Diego, CA - Peter Bermel

Selective Solar Absorbers

Schematic of the structure for selective absorber based on Si substrate with 215nm Si_3N_4 front anti-reflection coating (ARC) and 300nm Ag back reflection layer. Heights are not to scalle.Tian et al., *Appl. Phys. Lett.* (2017)

Photonic Simulations with S⁴

https://nanohub.org/tools/s4sim/

S-Matrix Method: Advantages

- No *ad hoc* assumptions regarding structures
- Applicable to wide variety of problems
- Suitable for eigenmodes or high-Q resonant modes at single frequency
- Can treat layers with large difference in length scales
- Computationally tractable enough on single core machines

S-Matrix Method: Disadvantages

- Accurate solutions obtained more slowly as the following increase:
 - Number of layers
 - Absolute magnitude of Fourier components (especially for metals)
 - Number of plane-wave components (~N³)
- Relatively slow for broad-band problems (time-domain is a good alternative)

Photonic Simulations with S⁴

Accuracy improves systematically

V. Liu, S. Fan, Comp. Phys. Comm. 183, 2233 (2012)

18

S⁴: Lua Control Files

• Obtain a new, blank simulation object with no solutions:

S = S4. NewSimulation()

• Define all materials:

```
S:AddMaterial('name', {eps_real, eps_imag})
```

Add all layers:

S:AddLayer('name', thickness, 'material_name')

• Add patterning to layers:

S:SetLayerPatternCircle('layer_name', 'inside_material', {center_x, center_y}, radius)

S⁴: FMM Formulations

- Specify the excitation mechanism:
- S:SetExcitationPlanewave(

{angle_phi, angle_theta}, -- phi in [0,180), theta in [0,360)
{s_pol_amp, s_pol_phase}, -- phase in degrees
{p_pol_amp, p_pol_phase})

Specify the operating frequency:

S:SetFrequency(0.4)

• Obtain desired output:

2 nanoHUB

S⁴: Input

S4: Stanford Stratified Structure Solver	🗙 Terminate	🕩 Keep for later
● Input → ② Simulate		About this tool Questions?
Example: transmission_spectrum		•
New		
Input Upload		
Download		
s		
s binary_grating		
binary_grating_mpi		
Christ_PRB_70_125_113_2004		
s Fan_PRB_65_2002		
_ fig2a		
S fig2b		
fig3_4		
fig6		
fresnel		
s integrate		
interpolator		
magneto_halfspace		
s magneto_slab		
Ring-Resonator Modes (Cartesian)		
simple		
Tikhodeev_PRB_66_45102_2002		
fqtir		
CH <u>transmission_spectrum</u>		
Options		
Number of processors: 1		
Walltime: 2h		

Can choose several examples drawn from the literature

August 6, 2017

S⁴: Output

Transmission through multilayer stack matches analytical expression

S⁴: Output

Transmission through 1D square grating of silicon and air

August 6, 2017

SPIE Optics+Photonics, San Diego, CA - Peter Bermel

S⁴: Output

 Transmission from Fig. 4 of Tikhodeev *et al.*, *Phys. Rev. B* 66, 045102 (2002).

August 6, 2017

SPIE Optics+Photonics, San Diego, CA - Peter Bermel

S4sim: Output Window

SPIE Ogliet+Photolics, San Diego, CA - Peter Bermel

nanoHUB

S4sim Example: PV Front Coating

nanoHUB

S4sim Example: PV Front Coating

õ nanoHUB

Direct Thermal Emission Measurement System

The sample is heated by the heater, and the emitted light is collected and guided by the Cu tube, transmitted through a CaF₂ window, reflected by three off-axis parabolic mirrors (PM 1, 2, and 3, Edmund Optics) to a Fourier Transform InfraRed (FTIR) spectrometer with a mercury cadmium telluride detector and KBr beam splitter (Thermo Fisher Nicolet 670).

300 µm Si Experiment & Simulation at Room Temperature

Measurement (solid lines) and simulation (dashed lines) of the emissivity of selective absorbers with (red lines) and without (black lines) front coating at room temperature. Measurements performed by a Lambda 950 spectrophotometer with an integrating sphere (Labsphere). The thicknesses of Si₃N₄, Si and Ag are 215nm, 300 μ m and 300nm respectively.

H. Tian et al., *Appl. Phys. Lett.* (2017)

High spectral selectivity is observed at 468 °C in both samples, with a cutoff wavelength of approximately 1.3 μ m. Higher short-wavelength emittance is both predicted and observed for the structure with a Si₃N₄ AR coating H. Tian et al., *Appl. Phys. Lett.* (2017)

Thin Si film optimization targeted @ 550 °C

Honen

Emissivity for selective absorbers with different Si thicknesses. Optimal Si_3N_4 thickness is used for each curve which is 80 nm. The temperature is set at 550°C and the F-P interference around the Mid-IR is smoothed out for more clear comparison. Less MWIR absorption is experienced for thinner layers of silicon because all samples are in the intrinsic regime, and free carrier absorption dominates.

H. Tian et al., *Appl. Phys. Lett.* (2017)

August 6, 2017

Optimization Summary for 550 °C

Dependence of solar thermal transfer efficiency η_t for different Si thicknesses on the concentration. The Si₃N₄ thickness is fixed at 80nm, and the temperature is 550C. Thinner layers of silicon experience less reradiation; however layers which are too thin have less absorption, which puts an upper bound on η_t .

H. Tian et al., Appl. Phys. Lett. (2017)

Step 2: Reach Below Ambient Temperatures under Sunlight

Key tools:

RadCool

Radiative Cooling for Passive Thermal Management

3 K microwave background

The sky transparency window allows radiative cooling outdoors

Questions:

- 1. Any alternative coolers to PhCs?
- 2. What is the temperature reduction and performance improvement by applying radiative cooling to hybrid or STPV systems?

0.25

ε
 (8 μm-13 μm)

Zhu, Linxiao et.al Proceedings of the National

Academy of Sciences 112.40 (2015): 12282-12287.

0.5 0.75

-90

90

1

Most PV cells experience heating from sub-bandgap absorption

In c-Si cells, degradation processes with activation energy of 0.85 eV are accelerated almost a factor of 2 for every 10 K temperature difference

X. Sun et al., IEEE J. Photovolt. (submitted, July 2016)

Radiative cooling on PV devices Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

Linxiao Zhu^{a,1}, Aaswath P. Raman^{b,1}, and Shanhui Fan^{b,2}

^aDepartment of Applied Physics, Stanford University, Stanford, CA 94305; and ^bGinzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA 94305

Edited by John B. Pendry, Imperial College London, London, United Kingdom, and approved August 18, 2015 (received for review May 19, 2015)
Date Silica

- Silica/silica PhC layer should at least preserve the solar absorption of the absorber
- Silica/silica PhC layer is expected to enhance the thermal emittance at the IR window

Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

Solar absorption of the three structures

Emissivity spectra of the three structures at the IR window

Experimental setup

nanoHUB

Low-density polyethylene Aluminized Mylar

Zhu, Linxiao et.al Proceedings of the National Academy of Sciences 112.40 (2015): 12282-12287.

The container allows control over convection

B

Effects of radiative cooling

nanoHUB

Zhu, Linxiao et.al Proceedings of the National Academy of Sciences 112.40 (2015): 12282-12287.

Benefits of radiative cooling extend across many PV technologies and installations

nanoHUB

X. Sun et al., IEEE J. Photovolt. (submitted, July 2016)

Self-Consistent Modeling of Radiative Cooling for Passive Thermal Management

'nanoHUB

 P_{emit} : emission power from thermal emitter at T_F $P_{rad,cell}$: radiative recombination of the PV diode at T_C *P_{out}*: electrical output power from PV diode (**SQ Limit**) P_{rad} : radiation power from the cooling emitter at T_C P_{atm} : radiation power from atmosphere (300 K) *P_{conv}*: convection power at the exposed surface $R = A_{cooler} / A_{cell}$ (Area ratio) $P_{emit}(T_E, E > E_a) + R \cdot P_{atm}$ $= P_{out}(T_C) + P_{rad cell}(T_C) + R \cdot P_{rad}(T_C) + (2R - 1) \cdot P_{conv}$

Z. Zhou et al., SPIE Conf. Proc. (2016).

Radiative Cooling Reduces Temperature and Improves Performance Substantially

Z. Zhou et al., SPIE Conf. Proc. (submitted).

SPIE Optics+Photonics, San Diego, CA - Peter Bermel

Methods

- Radiative cooling a passive technique that dissipates heat into remote space via thermal radiation
- Develop a simulation tool, RadCool, to model radiative cooling

Figure 3. Radiative cooling concept

nanoHUB

System overview

Figure 4. Schematic of the TPV system with a radiative cod

Equilibrium heat transfer analysis: $P_{abs} + P_{atm} + P_{sun} = P_{rad} + P_{rad,cell} + P_{out} + P_{cov}$

[3] Z. Zhou, X Selevon and P. Bermel, "Radiative cooling for thermophotovoltaic systems," Proc. of SPIE, vol. 9973, 2016, 2017

တ္တိnanoHUE

Simulation tool - input

1 Heat Load + 2	Cooler 🔸 🧲	Environment 🔸 🕘 Simulate	
Type: AM1.5G			•
Input intensity:	wl (rm) ir 310.5 6. 311.0 8. 311.5 8. 312.0 9. 313.0 1. 312.5 9. 313.0 1. 314.5 1. 315.5 1. 316.0 1. 317.0 1. 317.5 1. 318.0 1. 318.5 1. 319.0 2. 319.5 1. 319.0 2. 319.5 1. 320.0 2.	ntensity (W/m^2*rum) 5540E-02 2922E-02 4080E-02 3376E-02 8984E-02 0733E-01 0757E-01 1969E-01 3060E-01 3625E-01 1838E-01 2348E-01 5036E-01 7158E-01 8245E-01 7594E-01 8591E-01 0470E-01 9589E-01 0527E-01	Z
Area (m^2):	0.0081	si louid nave two columns, mavelenguis in natiometers and interiory vades.	
Solar concentration:	1		-
		Cooler >	

Heat load phase

Solar absorption power

$$P_{sun} = conc.*A * \int_0^\infty d\lambda \varepsilon(\lambda) I_{AM1.5}(\lambda)$$

*Assuming incidence angle is 0

Simulation tool - input

	iass + silicui	i waler slack						•	
Input emittance spectrum: 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	(um) 310028 312168 314324 316495 318680 320881 323097 325328 327573 329836 332113 334407 336716 339042 341383 343741 346114 348504 350910 353333	0deg 0.996250 0.787023 0.838882 0.759998 0.676888 0.722004 0.851017 0.722916 0.541889 0.677371 0.783717 0.625153 0.516326 0.565734 0.663367 0.524137 0.524137 0.536585 0.498932 0.599904 0.453531	20deg 0.904486 0.942645 0.908252 0.817729 0.924015 0.608750 0.842043 0.853051 0.626535 0.640253 0.505299 0.500315 0.530833 0.732190 0.661463 0.600250 0.768653 0.477688 0.758723 0.757720 The file format shoul	40deg 0.959446 0.959839 0.939120 0.939255 0.664441 0.670351 0.681211 0.563330 0.828202 0.541620 0.512825 0.552137 0.800929 0.525156 0.473210 0.473210 0.476174 0.684342 0.483503 0.702121 0.631991 d have two columns:	60deg 0.845263 0.929142 0.820051 0.814679 0.900717 0.620279 0.659045 0.681554 0.580609 0.619413 0.557108 0.666389 0.630627 0.511121 0.674769 0.495176 0.498501 0.484830 0.526764 0.499765	70deg 0.767351 0.756411 0.733958 0.695830 0.815702 0.612852 0.595843 0.573876 0.811011 0.567222 0.564332 0.612556 0.527930 0.510551 0.575276 0.623019 0.533651 0.734674 0.488668 0.705254	80deg 0.594742 0.601370 0.541831 0.515034 0.633704 0.569516 0.584444 0.576205 0.657420 0.422677 0.372977 0.535362 0.412026 0.412026 0.412026 0.475485 0.414612 0.456604 0.330981 0.416920 0.365475 0.614999	85deg 0.368734 0.354381 0.338308 0.382479 0.413576 0.403688 0.324001 0.413784 0.260641 0.246036 0.375821 0.24650 0.294349 0.358143 0.399146 0.213635 0.388002 0.307925 0.208891 0.404911	• Thermal radiated power P_{rad} = $\int d\Omega cos\theta \int_0^\infty d\lambda I_{BB}\varepsilon$
	(2) S	(1) Diffusiv pecular surface: Wavelen	e surface: Wavelengths i gths in micrometers and	n micrometers, angular a emissivity spectra at spe	veraged emittance value: cific angle (0°, 20°, 40°,	s. 60°, 70°, 80°, 85°).			*I _{BB} is the spectral radiance of
Area(m^2): 0.0	0081								a blackbady at temperature T

simulation tool - input

① Heat Load → ② Cooler → ③ Environment → ④ Simulate						
Atmosphere Ambient tempe	erature Chamber temperature Transmission spectrum					
Atmosphere type: MODTRAN d	ata: midlatitude winter day 🔹					
Innut atm anastrum, w](110) t	rans					
0.250 0 4.500 0	. 00000					
4.545 0 4.550 0	. 11272 . 14095					
, The file format	should have two columns: Wavelengths in micrometers and transmittance values.					
Convection coefficient (W/mo2K)	2 4221					
Thermal Conductivity (W/m*2K):	0.00002544					
Remai Conductivity (w/m K):	0.00032344					
Sample holder area (m^2):	0.005					
Sample holder length (m):	0.01					
. Cooler	Simulate -					
< cooler	Simulate >					

Environment Phase

 Absorbed thermal radiation from the atmosphere

$$P_{atm} = \int d\Omega \cos\theta \int_0^\infty d\lambda I_{BB} \varepsilon(\lambda, \Omega) \varepsilon_{atm}(\lambda, \Omega)$$

Conductive Power

$$P_{cod} = K * (T - T_{chamb})$$

Convective Power

$$P_{cov} = 2 * h_c * A * (T - T_{chamb})$$

Simulation tool - output

The steady-state temperature T of the sample is determined by: $P_{rad}(T) - P_{atm}(T_{amb}) - P_{sun}$ $+ P_{cod+cov} = 0$

Experimental verification

49

Experimental data

- Area ratio of the heat load and the cooler: 1
- Cooling material: silicon wafer with soda-lime glass
- Transmission spectrum: polyethylene film

Ambient temperature on the day of the experiment: ~290K

Conclusions/future work

- RadCool successfully models radiative cooling system in a graphical interface
- More experiments need to be done to confirm the generality of the system and modeling approach
- RadCool can be connected directly with the existing TPV model
- The radiative cooling technique is not limited to TPV systems
 - Potential applications include solar cell cooling, infrared detectors, and sensitive electronic devices that are used outdoors.

Step 3: Combine Hot and Cold Objects for Maximum Efficiencies

Key tools:

- TPXsim
- TPVexpt

23% Demonstrated TPV Electric Generation Efficiency with Spectral Control

Reflection spectrum for optical filter and receiver

Efficiency in converting radiation to electricity

B. Wernsman et al., IEEE Trans. Electron Dev. 51, 512 (2004)

Photon Recycling Can Greatly Reshape High Temperature Thermal Emission

Ilic, Bermel et al., Nature Nanotechnol. (2016)

SPIE Optics+Photonics, San Diego, CA - Peter Bermel

TPV Efficiencies May Approach 52%* at Reasonable Temperatures[†]

PHYSICS AND MATH

TPXSIM: A SYSTEM-LEVEL MODELING TOOL

nput 🔸 🕑 Simulate		
ect Parameters		
Selective Emitter Filter	System Parameters	
pload an emittance file?: 🔵	no no	
Input Emittance file: 900 900 900 900 900	0.00 0.011172697850465 1.00 0.012490344735815 2.00 0.014517766215873 3.00 0.017305389599366 4.00 0.020210210027744	2
The	file format should have 2 columns: Wavelengths in nanometers and Emittance Values	
arts Of The Selective Emitter		
Top Cavity Bottom)	
Coating: Dielectric Mirror		•
Add a chirping function?:	• yes	
Chirping Function:	Exponential	-
Enter Chirping Range:	1900-4500 This is the range of wavelengths over which chirping function is to be applied.	
Constant Value:	0.5 Enter a constant value you need as the power of the exponent / the number of which you want the logarithm / the slope	e of the linear function
Total Number of Layers:	26	+ -
Choose the even function:	(LH)^n	-
Chaose the add function	НЛ Цурр	_
		Simulate >
DIIE		(

Inghub (57) 000

WHAT ARE THE BEST CASE EFFICIENCIES?

URDUE

Contour plot showing the combination of filter bandgap and PV bandgap leading to maximum efficiency Or, just an emittance plot

SPIE Optics+Photonics, San Diego, CA - Peter Bermel

TPVexpt

- Based on TPVtest
- Considers complex rectangular geometries for heater, emitter, and PV diode
- Considers non-idealities (e.g., series/shunt resistance)
- **X**TPV efficiency simulation _ 🗆 X XTPV efficiency simulation _ 🗆 🗙 File 1 Selective emitter + 2 Filter + 3 System + 4 Simulate ① Selective emitter → ② Filter → ③ System → ④ Simulate Heater/Emitter PV Diode Alignment Result: Emittance - 🗔 Heater temperature: C= 1000K (SS 0.8 Emitter temperature: C= 1000K Room temperature: em 300K Ē0.6 tance Heater length (mm): 27 Heater width (mm): 27 - 0.2 - Emitter length (mm): 10 3000 2000 Emitter width (mm): 10 Wavelength (nm) Emitter thickness (mm): 3 < Filter Simulate > < System
- Phased GUI with overhauled "System" tab

View Factor/Geometry

- View factor: $F_{A \rightarrow B}$ is the proportion of the radiation which leaves surface A that strikes surface B
- View factor from cell to emitter for power calculations

 $Definitions: X = x/z; N = \eta/z; Y = y/z;$ $S = \xi/z; \alpha_{li} = S_l - X_i; \beta_{kj} = N_k - Y_j$ $F_{1-2} = \frac{1}{(X_2 - X_1)(Y_2 - Y_1)} \sum_{i=1}^2 \sum_{k=1}^2 \sum_{j=1}^2 \sum_{i=1}^2 \left[(-1)^{(i+j+k+l)} G(\alpha_{lib} \beta_{jk}) \right]$ where $G(\alpha_{lib}, \beta_{jk}) = \frac{1}{2\pi} \left\{ \alpha_{li} (1 + \beta_{kj}^2)^{1/2} \tan^{-1} \left[\frac{\alpha_{li}}{(1 + \beta_{kj}^2)^{1/2}} \right] - \beta_{kj} \tan^{-1} \beta_{kj} \right\}$ View factor calculation for rectangle to rectangle in a

View Factor Implementation

- Heater, emitter, and cell modeled as rectangles
- Emitter physically attached to heater
- Heater area broken up into four rectangles for calculations
- Sum of rectangle view factors is equal to heater view factor
- Accounts for thickness of emitter and heater radiation

Method of calculating heater view factor. The back rectangle represents the heater (dark blue). The light blue rectangle represents the emitter.

Shunt/Series Resistance

- Fill factor (FF) determines the efficiency of PV cell
- Ideal cell has series resistance of 0Ω and shunt of $\infty \Omega$

• Non-idealities decrease FF [6]

$$\eta = \frac{V_{OC}I_{SC}FF}{P_{in}} \qquad FF = \frac{V_{OC} - \ln(V_{OC} + 0.72)}{V_{OC} + 1} \qquad r_S = \frac{R_S}{R_{CH}} \qquad r_{SH} = \frac{R_{SH}}{R_{CH}}$$

$$FF = FF_0 \left\{ (1 - 1.1r_S) + \frac{r_S^2}{5.4} \right\} \left\{ 1 - \frac{V_{OC} + 0.7}{V_{OC}} \frac{FF_0}{r_{SH}} \left[(1 - 1.1r_S) + \frac{r_S^2}{5.4} \right] \right\}$$

Step 4: Improving Low-Bandgap Photovoltaic Cells

Key tool(s):

- ADEPT
- MEEPPV

Drift-Diffusion Model

Electrostatics (Poisson's equation):

$$\nabla \cdot \varepsilon \nabla V = -\left(p - n + N_D^+ - N_A^-\right)$$

Charge conservation:

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J}_{n} + U_{n}$$
$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{J}_{p} + U_{p}$$

Current from drift & diffusion terms:

$$J_{n} = qn(x)\mu_{n}E(x) + qD_{n}\frac{dn}{dx}$$
$$J_{p} = qp(x)\mu_{p}E(x) - qD_{p}\frac{dn}{dx}$$

S. Selberherr: "Analysis and Simulation of Semiconductor Devices", Spie Optics+Photopics, San Diego, CA - Peter Bernel Semiconductor Devices", Springer, 1984.

nanoHUB

Solar Cells: Ideal IV Characteristics

Maximum Short Circuit Current

Example: Silicon $E_g = 1.1 \text{eV}$. Only photons with a wavelength < 1.12 μ m will be absorbed.

Open-circuit Voltage and Efficiency

$$I_{TOT} = I_0 \left(e^{qV/k_B T} - 1 \right) - I_{SC} \qquad V_{OC} = \frac{k_B T}{q} \ln \left(\frac{I_{SC}}{I_0} \right) \qquad h = \frac{P_{out}}{P_{in}} = \frac{I_{SC} V_{OC} FF}{P_{in}}$$

Example for silicon photovoltaics:

$$I_0 = 1 \ 10^{-12} \text{ A}$$
 $h = \frac{P_{out}}{P_{in}} = \frac{40\ 0.63\ 0.8}{100} = 0.20$

$$I_{SC} = 0.90 \cdot 44 \cdot 10^{-3} = 40 \text{ mA}$$
$$V_{OC} = 0.026 \ln \left(\frac{40 \times 10^{-3}}{1 \times 10^{-12}}\right) = 0.63$$

Increasing the Efficiency

$$h = \frac{P_{out}}{P_{in}} = \frac{I_{SC}V_{OC}FF}{P_{in}}$$

1) Increase the short circuit current from 40 towards 44

2) Increase
$$V_{OC}$$
 (decrease $V_{OP} = \frac{k_B T}{q} \ln \left(\frac{I_{SC}}{I_0} \right)$

$$I_0 = qA\left(\frac{D_n}{W_P}\frac{n_i^2}{N_A}\right)$$

70

anoHUB

Efficiency of Silicon Solar Cells (PERL Architecture)

Martin Green Group UNSW – Zhao et al., 1998 (25% at 1 sun)

August 6, 2017 SPIE Optics+Photonics, San Diego, CA - Peter Bermel

71

 $J_{SC} - V_{OC}$ trade-off

- 1) Smaller bandgaps give higher short circuit current
- 2) Larger bandgaps give higher open-circuit voltage
- 3) For the given solar spectrum, an optimum bandgap exists.

"Shockley-Queisser Limit"

SPIE Optics+Photonics, San Diego, CA72eter Bermel

ADEPT 2

Available on nanoHUB.org via:

https://nanohub.org/tools/adeptnpt/

August 6, 2017

SPIE Optics+Photonics, San Diego, CA - Peter Bermel

ADEPT: Input deck

- Upon opening ADEPT 2, a blank input page will appear, awaiting your input file.
- If upload/download does not work, one reason could be "pop-up" blocking by your internet browser.

ADEPT: Running a simulation

- Keep in mind that ADEPT 2 is FORTRAN 77 based. The format of certain input may cause unexpected error.
- Please refer to "ADEPT 2 User Manual" for more information regarding how to write an ADEPT input deck.

ADEPT: While simulation is running

ADEPT: Output

nanoHUB

ADEPT: Output

nanoHUB

ADEPT: Output

ADEPT: Output

Outputs include electrostatic (Poisson) solution:

Energy band diagram

ADEPT: OutputCarrier concentrations:

SPIE Optics+Photonics, San Diego, CA - Peter Bermel

ADEPT: Output

And finally, realistic I-V curves:

MEEPPV: User Interfaces

https://nanohub.org/tools/meeppv

Click on the button below to proceed to the second page.

Graphical User Interface

nanoHUB

Simulation Option → ② Input Parameter → ③ Simulate			
Input Features Back Reflector Dimension: 2D Solar Cell Input Lattice Constant: The second	Click here to select 2D/3D solar cell for simulation: You will be directed to		
Minimum Wavelength (nm): 300 AR coating Maximum Wavelength (nm): 1200 AR coating Number of Wavelength: 201 Image: Control of Contr	erial	this page if the graphical user interface (first option) is selected.	
Burried Oxide: Burried Oxide: Burried Oxide: Back Reflector: Sack Refl	simulate >	Users can input parameters that describe the solar cell features as well as the simulation domain.	

MEEPPV Input

Graphical User Interface

Graphical User Interface

More input parameters under each feature tab

Text-Based (Scheme) Interface

files) from the first page is selected.

If upload/download does not work, one reason could be "popup" blocking by your internet browser.

Text-Based (Scheme) Interface

(define-param gratingthickness 0.0) (define-param nsilicon 3.679) (define-param ksilicon 0.00406) (define-param naluminum 2.80) (define-param kaluminum 8.0751354064872 (define-param nsilver 0.142628) (define-param ksilver 5.297116) (define-param yperiods 4) (define-param zperiods 4)	This is your entire control file. You can edit it here.	ത്രീറ്ററെപ്പറ്റ
Choose "Upload" to upload your script from local disk Options Number of processors: 1 Walltime: 2h Click f Simulation Option Click f	nere to begin ation	

✤ Note that the input file is written in Scheme language.

For more details and tutorial on writing control file with Scheme, please refer to: <u>http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial</u>

Text-Based (Scheme) Interface

This window dynamically displays output. Sometimes, an error occurs and a notification will be shown here. 1) Simulation Option 🔸 🕗 Input Parameter 🔸 🚯 Simulate block, center = (-2.25, 0, 0)size (0.14,4,4) axes (1,0,0), (0,1,0), (0,0,1)dielectric constant epsilon diagonal = (3.6864, 3.6864, 3.6864) block, center = (-0.18,0,0) size (4, 4, 4)axes (1,0,0), (0,1,0), (0,0,1)dielectric constant epsilon diagonal = (13.535, 13.535, 13.535) block, center = (2.07, 0, 0)size (0.5,4,4) axes (1,0,0), (0,1,0), (0,0,1) block, center = (1.82, 1.5, 0)size (0,0.5,4) axes (1,0,0), (0,1,0), (0,0,1)block, center = (1.82, 0.5, 0)size (0,0.5,4) axes (1,0,0), (0,1,0), (0,0,1) block, center = (1.82,-0.5,0) size (0,0.5,4) axes (1,0,0), (0,1,0), (0,0,1) block, center = (1.82, -1.5, 0)size (0,0.5,4) axes (1,0,0), (0,1,0), (0,0,1)time for set epsilon = 0.0693641 s time for set conductivity = 0.00679207 s time for set conductivity = 0.00677109 s time for set conductivity = 0.00674415 s creating output file "./run-eps-000000.00.h5"...

Abort

< Input Parameter</p>

Output

Generating Graphics

MEEPPV: <u>https://nanohub.org/tools/meeppv</u>

MEEPPV Output

Downloading Data

nanoHUB

MEEPPV: Post-processing in MATLAB

Summary

- MEEPPV performs full-wave electromagnetics simulations of photovoltaic devices
- Two interfaces to control the input:
 - Graphical user interface allows graphical feedback on device design
 - Text-Based (Scheme) interface allows greatest degree of control, designed for experts
- ♦Output
 - Can generate graphics, including line plots (with adjustable axes) and field distributions (either at a single time, or as a movie)
 - Can download raw data as text or csv for further analysis
- Any problems handled through nanoHUB help interface

noHUB

Future Capabilities

- Jupyter Notebooks
- MATLAB-based version of ADEPT