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Lecture 2

General Model for Transport
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2.1 Introduction

In this chapter, we introduce a simple, but surprisingly useful model for

electron transport. As sketched in Fig. 2.1, we first seek to understand

the I–V characteristics of a nanoscale electronic device. The approach is

due to R. Landauer in a form developed by Datta [1–3]. As indicated in

Fig. 2.1, the contacts play an important role, but we will see that the

final result can be generalized to describe transport in the bulk, for which

the current is controlled by the properties of the material between the

contacts. We shall not attempt to spatially resolve quantities within the

device. In practice this can be important, especially for devices under

moderate or high bias. Semiconductor devices are often described by the

so-called semiconductor equations [4], that make use of the type of bulk

transport equation that we shall discuss.

The heart of the device, the channel, is a material that is described

by its density-of-states, the DOS, D(E − U), where E is energy, and U a

self-consistent electrostatic potential, U . An external gate may be used to

13



October 9, 2012 9:55 7975: Near-Equilibrium Transport transport

14 Near-equilibrium Transport: Fundamentals and Applications

Fig. 2.1. Illustration of a model nanoscale electronic device. The voltage, V , lowers the
Fermi level of contact 2 by an amount, qV .

move the states up and down in energy (as in a transistor), but in these

lectures we will assume a two-terminal device and set U = 0.

The channel of our device is connected to two ideal contacts, which

are assumed to be large regions in which strong scattering maintains near-

equilibrium conditions. Accordingly, each contact is described by an equi-

librium Fermi function (or occupation number),

f0 =
1

1 + e(E−EF )/kBTL
, (2.1)

where EF is the Fermi level (chemical potential) of the contact, and TL is

the temperature of the lattice, which is also the temperature of the elec-

trons because of the assumed near-equilibrium conditions. Each of the two

contacts is in equilibrium, but if a voltage, V , is applied across the device,

then EF2 = EF1 − qV .

The connection of the contacts to the channel is described by a charac-

teristic time, τ , which describes how long it takes electrons to get in and

out of the device. For a very small device (e.g. a single molecule), τ is

controlled by the contact. For longer devices with good contacts, we will

see that τ becomes the transit time for electrons to cross the channel. In

general, the two connections might be different, so τ1 and τ2 may be differ-

ent. Sometimes it is convenient to express τ in units of energy according

to γ = ~/τ . If the channel is a single molecule, γ has a simple physical in-

terpretation; it represents the “broadening” of the molecular energy levels

due to the finite lifetimes of the electrons in a molecular level.
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Although this model is very simple, we shall see that it is also very

powerful. We shall be concerned with two questions:

(1) How is the electron density in the device related to the Fermi levels in

the contacts, to the density of states, and to the characteristic times?

(2) How is the electron current through the device related to the same

parameters?

Before we develop the mathematical model, we briefly summarize the

key assumptions. For a fuller discussion of these assumptions, see Refs.

[1–3].

(1) The channel of the device is described by a band structure, E(k). This

assumption is not necessary; for the more general case, see Ref. [1].

(2) The contacts are large with strong inelastic scattering that maintain

near-equilibrium conditions.

(3) We assume that electrons feel a self-consistent (mean-field) potential,

U , due to the other electrons and the applied biases. (This assumption

breaks down for “strongly correlated transport”, such as single electron

charging.) In practice, we would find the self-consistent potential by

solving the Poisson equation. It is important for devices like transistors,

but in these notes, we restrict our attention to two-terminal devices and

set U = 0.

(4) All inelastic scattering takes place in the contacts. Electrons flow from

left to right (or right to left) in independent energy channels.

(5) The contacts are reflectionless (absorbing). Electrons that enter the

contact from the channel are equilibriated according to the Fermi level

of the contact.

Although these assumptions may appear restrictive, we will find that they

describe a large class of problems. Having specified the model device, we

turn next to the mathematical analysis.

2.2 Mathematical model

To develop the mathematical model, consider first the case where only the

first (left) contact is connected to the channel. Contact 1 will seek to fill

up the states in the channel according to EF1. Eventually, contact 1 and

the channel will be in equilibrium with number of electrons between E and
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E + dE given by

N ′

01(E)dE = D(E)dEf1(E) , (2.2)

where D(E) is the density-of-states at energy, E, in the channel and f1(E)

is the equilibrium Fermi function of contact 1. Note that N ′
01(E)dE is the

total number of electrons, not the number density. The density-of-states

includes the factor of two for spin degeneracy. We can also write a simple

rate equation to describe the process by which equilibrium between the

contact and channel is achieved. The rate equation is

F1 =
dN ′(E)

dt

∣

∣

∣

∣

1

=
N ′

01(E)−N ′(E)

τ1(E)
. (2.3)

According to eqn. (2.3), dN ′/dt is positive if the number of the electrons

in the channel is less than the equilibrium number and negative if it is

more. If the channel is initially empty, the channel fills up until equilibrium

is achieved, and if is initially too full of electrons, it empties out until

equilibrium with the contact is reached.

On the other hand, if only contact 2 is connected to the channel, a

similar set of equations can be developed,

N ′

02(E)dE = D(E)dEf2(E) , (2.4)

F2 =
dN ′(E)

dt

∣

∣

∣

∣

2

=
N ′

02(E)−N ′(E)

τ2(E)
. (2.5)

In practice, both contacts are connected at the same time and both

inject or withdraw electrons from the channel. The total rate of change of

the electron number in the device is

dN ′(E)

dt

∣

∣

∣

∣

tot

= F1 + F2 =
dN ′(E)

dt

∣

∣

∣

∣

1

+
dN ′(E)

dt

∣

∣

∣

∣

2

. (2.6)

In steady-state, dN ′/dt = 0, and we can solve for the steady-state number

of electrons in the channel as

N ′(E)dE =
D(E)dE

2
f1(E) +

D(E)dE

2
f2(E) , (2.7)
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where we have assumed that τ1 = τ2 and used eqns. (2.2) and (2.4). Finally,

we obtain the total, steady-state number of electrons in the channel by

integrating over all of the energy channels,

N =

∫

N ′(E)dE =

∫
[

D(E)

2
f1(E) +

D(E)

2
f2(E)

]

dE . (2.8)

Equation (2.8) is the answer to our first question. It gives the number

of electrons in the channel of the device in terms of the density-of-states of

the channel and the Fermi functions of the two contacts. Finally, a word

about notation. The quantity, N ′ has units of number / energy; it is the

differential carrier density, N ′(E) = dN/dE|E .
We should note the similarity of eqn. (2.8) to the standard expression

for the equilibrium electron number in a semiconductor [4],

N0 =

∫

D(E)f0(E)dE . (2.9)

The difference is that eqn. (2.9) refers to the number of electrons in equi-

librium whereas eqn. (2.8) describes a device that may be in equilibrium

(if EF1 = EF2) or very far from equilibrium if the Fermi levels are very

different.

We should remember that N is the total number of electrons in the

channel, and D(E) is the total density-of-states, the number of states per

unit energy. In 1D, D ∝ L, the length of the channel. In 2D, D ∝ A, the

area of the channel, and in 3D, D ∝ Ω, the volume of the channel. For

device work we usually prefer to express the final answers in terms of the

electron density (per unit length in 1D, per unit area in 2D, and per unit

volume in 3D).

Having answered our first question, how the electron number is related

to the properties of the channel and contacts, we now turn to the second

question, the steady-state current. When a steady-state current flows, one

contact tries to fill up states in the channel and the other tries to empty

them. If EF1 > EF2, contact 1 injects electrons and contact 2 removes

them, and vice versa if EF1 < EF2.

The rates at which electrons enter or leave contacts 1 and 2 are given

by eqns. (2.3) and (2.5). In steady state,

F1 + F2 = 0 . (2.10)



October 9, 2012 9:55 7975: Near-Equilibrium Transport transport

18 Near-equilibrium Transport: Fundamentals and Applications

The current is defined to be positive when it flows into contact 2, so

I ′ = qF1 = −qF2 . (2.11)

Using our earlier results, eqns. (2.2) and (2.4), we find

I ′(E) =
q

2τ(E)
(N ′

01 −N ′

02) =
2q

h

γ(E)

2
π D(E) (f1 − f2) , (2.12)

where

γ ≡ ~

τ(E)
, (2.13)

Finally, the total current is found by integrating over all of the energy

channels,

I =

∫

I ′(E)dE =
2q

h

∫

γ(E)π
D(E)

2
(f1 − f2) dE . (2.14)

According to eqn. (2.14), current only flows when the Fermi levels of the

two contacts differ. In that case, there is a competition — one contact keeps

trying to fill up the channel while the other one keeps trying to empty it.

This concludes the mathematical derivation that answers our two ques-

tions about how the steady-state number of electrons and current are re-

lated to the properties of the channel and contacts. The key results, eqns.

(2.8) and (2.14) are repeated below.

N =

∫

D(E)

2
(f1 + f2) dE

I =
2q

h

∫

γ(E)π
D(E)

2
(f1 − f2) dE .

(2.15)

The remainder of these lecture notes largely consists of understanding and

applying these results.

2.3 Modes

The fact that the current is proportional to (f1−f2) makes sense, and 2q/h

is a set of fundamental constants that we shall see is important, but what is

the product, γπD/2? It is an important quantity. According to eqn. (2.13),
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γ has units of energy. The density-of-states, D(E), has units of 1/energy.

(Recall that we deal with total electron numbers, not electron densities, so

the 3D density-of-states here does not have units of 1/energy-volume, as is

customary in semiconductor physics.) Accordingly, we conclude that the

product, γπD/2 is dimensionless. We shall see that it is the number of

conducting channels at energy, E.

Figure 2.2 is a sketch of a two-dimensional, ballistic channel.

The total density-of-states is

D(E)/A = D2D(E) = gv
m∗

π~2
, (2.16)

where D2D is the 2D density-of-states per unit area, the number of states

per J-m2. The final result assumes parabolic energy bands with an effective

mass of m∗ and occupation of a single subband (due to confinement in the

vertical direction) with a valley degeneracy of gv.

Fig. 2.2. A simple, 2D electronic device with channel width, W and length, L. For
the calculation of the average x-directed velocity, ballistic transport is assumed, i.e. the
channel is much shorter than a mean-free-path for scattering.

Let’s do an “experiment” to determine the characteristic time, τ . From

eqns. (2.7) and (2.12), we find

qN ′(E)dE

I ′(E)dE
=

~

γ

(f1 + f2)

(f1 − f2)
. (2.17)

Now in our experiment we apply a large voltage to contact 2, which makes

EF2 ≪ EF1 so f2 ≪ f1, and eqn. (2.17) becomes

qN ′(E)dE

I ′(E)dE
=

stored charge

current
=

~

γ
= τ(E) . (2.18)
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The number of electrons in the channel is N ′(E) = n′
s(E)WL, where ns is

the electron density per unit area. The differential current can be written

as I ′(E) = qWn′
s(E) 〈υ+x (E)〉, so from eqn. (2.18), we find

τ(E) =
L

〈

υ+x (E)
〉 , (2.19)

which is just the average transit time of carriers across the channel.

To evaluate τ(E), we need 〈υ+x (E)〉, the average velocity in the +x di-

rection. From Fig. 2.2, we see that for ballistic transport, in which electrons

travel across the device without changing direction,

〈

υ+x (E)
〉

= υ(E) 〈cos θ〉 . (2.20)

A simple calculation gives

〈cos θ〉 =
∫ π/2

−π/2
cos θdθ

π
=

2

π
, (2.21)

so we find the average ballistic velocity in the +x direction as

〈

υ+x (E)
〉

=
2

π
υ =

2

π

√

2(E − EC)

m∗
, (2.22)

where the final result assumes parabolic energy bands. (We also assumed

isotropic conditions, so that υ(E) is not a function of θ.) Defining

M(E) ≡ γ(E)π
D(E)

2
(2.23)

and using γ = ~/τ and D = D2DWL, we find

M(E) =WM2D(E) =W
h

4

〈

υ+x (E)
〉

D2D(E) . (2.24)

Similar arguments in 1D and 3D yield

M(E) =M1D(E) =
h

4

〈

υ+x (E)
〉

D1D(E)

M(E) =WM2D(E) = W
h

4

〈

υ+x (E)
〉

D2D(E)

M(E) = AM3D(E) = A
h

4

〈

υ+x (E)
〉

D3D(E) .

(2.25)
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Note that the number of conducting channels at energy, E, is proportional

to the width of the conductor in 2D and to the cross-sectional area in 3D.

We now have expressions for the number of channels at energy, E in

1D, 2D, and 3D, but we should try to understand the result. For parabolic

energy bands, we can evaluate (2.24) to find

WM2D(E) = gvW

√

2m∗(E − Ec)

π~
, (2.26)

where gv is the valley degeneracy. Parabolic energy bands are described by

E(k) = EC +
~
2k2

2m∗
, (2.27)

which can solved for k to write

WM2D(E) = gv
Wk

π
= gv

W

λB(E)/2
, (2.28)

where λB = 2π/k is the de Broglie wavelength of electrons at energy, E.

We now see how to interpret eqn. (2.24); M(E) is simply the number of

electron half wavelengths that fit into the width of the conductor. This

occurs because the boundary conditions insist that the wavefunction goes

to zero at the two edges of the conductor.

We can now re-write eqns. (2.15) as

N =

∫

D(E)

2
(f1 + f2) dE

I =
2q

h

∫

M(E) (f1 − f2) dE

, (2.29)

which shows that to compute the number of electrons and the current, we

need two different quantities, D(E) and M(E). The density-of-states is a

familiar quantity. For parabolic energy bands, we know that the 1D, 2D,

and 3D densities-of-states are given by

1D : D(E) = D1D(E)L =
L

π~

√

2m∗

(E − Ec)
H(E − Ec)

2D : D(E) = D2D(E)A = A
m∗

π~2
H(E − Ec)

3D : D(E) = D3D(E)Ω = Ω
m∗
√

2m∗(E − Ec)

π2~3
H(E − Ec) ,

(2.30)
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where L is the length of the 1D channel, A is the area of the 2D channel,

Ω is the volume of the 3D channel, and H is the Heaviside step function.

We now also know how to work out the corresponding results for M(E);

for parabolic energy bands they are

M(E) =M1D(E) = H(E − Ec)

M(E) =WM2D(E) =Wgv

√

2m∗(E − Ec)

π~
H(E − Ec)

M(E) = AM3D(E) = Agv
m∗

2π~2
(E − Ec)H(E − Ec) ,

(2.31)

where W is the width of the 2D channnel and A is the cross sectional area

of the 3D channel. Figure 2.3 compares the density-of-states and number

of modes (conducting channels) in 1D, 2D, and 3D for the case of parabolic

energy bands (E(k) = Ec + ~
2k2/2m∗).

Fig. 2.3. Comparison of the density-of-states, D(E), and number of channels, M(E),
in 1D, 2D, and 3D. Parabolic energy bands are assumed in each case.

We can summarize the main points of this section as follows.

(1) The density-of-states vs. E is used to compute carrier densities.

(2) The number of modes (channels) vs. E is used to compute the current.
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(3) The number of modes at energy, E, is proportional to the average

velocity (in the direction of transport) at energy, E, times the density-

of-states, D(E).

(4) M(E) depends on the band structure and on dimensionality.

Although we assumed parabolic energy bands to work out examples,

the main results, eqn. (2.25), are general. See Lecture 10 — the graphene

case study to see how to work out M(E) for graphene. For general band

structures, a numerical procedure can be used [5].

2.4 Transmission

Figure 2.2 showed how electrons flow from contact 1 to contact 2 under

ballistic conditions. Figure 2.4 shows the diffusive case.

Fig. 2.4. A simple, 2D electronic device with channel width, W and length, L. In this
case, diffusive transport is assumed — the channel is many mean-free-paths long.

Electrons injected from contact 1 (or 2) undergo a random walk. Some

of these random walks terminate at the injecting contact and some at the

other contact. If there is a positive voltage on contact 2, then a few more

of the random walks terminate on contact 2. The average distance between

scattering events is known as the mean-free-path. Transport is “diffusive”

when the sample length is much longer than the mean-free-path. A key

parameter in our model is the quantity γπD/2, which we have seen is

M(E) for ballistic transport. The broadening, γ, is related to the transit

time according to γ = ~/τ . We expect the transit time to increase when

transport is diffusive, so γπD/2 will decrease. In this section, we will show

that for diffusive transport γπD/2 =M(E)T (E), where T (E) ≤ 1 is known

as the “transmission”.
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For ballistic transport, there is a distribution of transit times because

carriers are injected into the channel at different angles. Accordingly, we

evaluated γ from the average transit time and found

γ(E) =
~

〈τ(E)〉 , (2.32)

where

〈τ(E)〉 = L
〈

υ+x (E)
〉 =

L

υ(E) 〈cos θ〉 =
L

υ(E) (2/π)
. (2.33)

Our challenge now is to determine 〈τ(E)〉 for the case of diffusive transport.
Consider a device with a very long channel (L ≫ λ), then Fick’s Law

of diffusion should apply. If we inject electrons from contact 1 and collect

them from contact 2, then the current in our 2D device should be given by

J = qDn
dns

dx
A/cm . (2.34)

As shown in Fig. 2.5, there is a finite concentration of injected electrons at

x = 0, ∆ns(0), and for a long channel, ∆ns(L) → 0. The electron profile is

linear because no recombination-generation is assumed. The total number

of electrons in the device is N = ns(0)WL/2, where W is the width of

the conductor in the direction normal to current flow, and L is the length.

From our definition of transit time, we find

τ =
qN

I
=

Wq∆ns(0)L/2

WqDn∆ns(0)/L
=

L2

2Dn
, (2.35)

where we have used I = JW and dns/dx = ∆ns(0)/L. We conclude that

the diffusive transit time is

τD =
L2

2Dn
, (2.36)

while the ballistic transit time was

τB =
L
〈

υ+x
〉 . (2.37)

Putting this all together, we find

γ(E)π
D(E)

2
=

~

τD
π
D

2
=

~

τB
π
D

2
× τB
τD

≡M(E)T (E) , (2.38)

where

T (E) =
τB
τD

. (2.39)
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Fig. 2.5. Illustration of diffusion in a channel many mean-free-paths long.

We see that in the presence of scattering, we just need to replace M(E) by

M(E)T (E).

To evaluate T (E), we use eqn. (2.39) with eqns. (2.36) and (2.37) and

find

T (E) =
2Dn

L
〈

υ+x
〉 . (2.40)

The diffusion coefficient describes the random walk of electrons; it is re-

lated to the carrier velocity and the mean-free-path for backscattering, λ,

according to

Dn =
〈υ+x 〉λ

2
cm2/s . (2.41)

(This expression is not obvious. You can check that it is dimensionally

correct but will have to wait until Lecture 6 for the derivation and for a

precise definition of the mean-free-path for backscattering.) Finally, using

eqns. (2.40) and (2.41), we find a simple expression for the transmission:

T (E) =
λ

L
≪ 1 . (2.42)

As expected, the product γπD/2 =M(E)T (E) is greatly reduced from its

ballistic value.

Our “derivation” of T (E) here is no more than a plausibility argument.

As we will discuss in Lecture 6, the transmission is the probability that an

electron at energy, E injected from contact 1 exits in contact 2 (or vice

versa). It must be a number between 0 and 1. Equation (2.42) is accurate
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in the diffusive limit that we have considered (L ≫ λ), but it fails when L

is short. The correct, general expression is

T (E) =
λ(E)

λ(E) + L
, (2.43)

which reduces to eqn. (2.42) for the diffusive limit of L ≫ λ, but for the

ballistic limit of L ≪ λ it approaches 1. This expression is reasonable,

but we will see in Lecture 6 that it can be derived with relatively few

assumptions and that it is valid not only in the ballistic and diffusive limits,

but in between as well.

To summarize, we can write in general

γ(E)π
D(E)

2
=M(E)T (E) , (2.44)

with M(E) being given by eqns. (2.25) and T (E) by eqn. (2.43). People

speak of three different transport regimes:

Diffusive : L≫ λ T = λ/L≪ 1

Ballistic : L≪ λ T → 1

Quasi− ballistic : L ≈ λ T < 1 .

(2.45)

Our simple transport model can be used to describe all three regions.

2.5 Near-equilibrium (linear) transport

To summarize, we have developed an expression for the current in a

nanoscale device that can be expressed in two different ways:

I =
2q

h

∫

γ(E)π
D(E)

2
(f1 − f2) dE

I =
2q

h

∫

T (E)M(E) (f1 − f2) dE .

(2.46)

There is no limitation to small applied biases yet, but if we apply a large

bias, then there could be a lot of inelastic scattering that would invali-

date our assumption that the current flows in independent energy channels.

Since our interest is in near-equilibrium transport, we now simplify these

equations for low applied bias.
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The two Fermi functions in eqn. (2.46) are different when there is an

applied bias. Recall that an applied bias lowers the Fermi level by −qV . If

the applied bias is small, we can write

(f1 − f2) ≈ − ∂f0
∂EF

∆EF . (2.47)

From the form of the equilibrium Fermi function,

f0 =
1

1 + e(E−EF )/kBTL
, (2.48)

we see that

∂f0
∂EF

= −∂f0
∂E

. (2.49)

Equations (2.49) and (2.47) can be used in eqn. (2.46) along with ∆EF =

−qV to obtain

I =

[

2q2

h

∫

T (E)M(E)

(

−∂f0
∂E

)

dE

]

V = GV . (2.50)

The final result,

G =
2q2

h

∫

T (E)M(E)

(

−∂f0
∂E

)

dE , (2.51)

is just the conductance in Ohm’s Law, but now we have an expression that

relates the conductance to the properties of the material. It is important

to remember that this expression is valid in 1D, 2D, or 3D, if we use the

appropropiate expression for M(E).

2.6 Transport in the bulk

In this lecture, we have developed a model for the current or conductance

of a device whose channel length may be short or long. When the channel

is long, the contacts play no role, and the current is limited by the material

properties of the channel. We can develop an expression for the current

in a bulk conductor from either of the two forms of the current equations,

eqn. (2.46). Let’s use the first form.

Assuming near-equilibrium conditions, we can use eqn. (2.47) to write

eqn. (2.46) as

I =
2q

h

∫
[

γ(E)π
D(E)

2

(

− ∂f0
∂EF

)

∆EF

]

dE . (2.52)
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A bulk conductor is, by definition, in the diffusive limit, so

γ(E) =
~

τ(E)
=

~

L2/2Dn(E)
. (2.53)

To be specific, let’s assume a 2D conductor for which we can write

D(E) =WLD2D(E) . (2.54)

Now using eqns. (2.53) and (2.54) in (2.52), we find

Jnx = I/W =

[
∫

qDn(E)D2D(E)

(

− ∂f0
∂EF

)

dE

]

∆EF

L
. A/cm (2.55)

Figure 2.6 illustrates how we think about a bulk resistor. In a conven-

tional resistor, the potential and electrochemical potential (or quasi-Fermi

level) drop linearly along the length. In our model device, the Fermi levels

are only defined in the two contacts. Since the bulk resistor is assumed to

be under low bias and near-equilibrium everywhere, we can conceptually

place two contact separated by a length, L≫ λ, anywhere along the length

of the resistor. The average electrochemical potential in the first contact,

becomes EF1 for our “device”, and the average electrochemical potential in

the second contact, our EF2. Because the electrochemical potential drops

linearly with position, ∆EF /L becomes dFn/dx, and we can write (2.55)

as

Jnx = σn
d(Fn/q)

dx
, (2.56)

where the conductivity is

σn =

∫

q2Dn(E)D2D(E)

(

−∂f0
∂E

)

dE . (2.57)

Equations (2.56) and (2.57) are standard results that are conventionally

obtained from irreversible thermodynamics or by solving the Boltzmann

Transport Equation [7]. We have obtained the standard expressions for

bulk materials by assuming that the channel of our model device is much

longer that a mean-free-path.

Real resistors can be linear even when quite large voltages are applied.

How does this occur? It occurs because when the resistor is long, electrons

do not drop down the total potential drop in one step. Instead, they con-

tinually gain a little energy and then dissipate it by emitting phonons. If

the resistor is long and the voltage drop not too large, then the electrons
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Fig. 2.6. Illustration of how a near-equilibrium bulk conductor is conceptually treated

as a device with two contacts.

are always near-equilibrium, and we can conceptually divide up the resis-

tor into sub-devices, as sketched in Fig. 2.6, where only a fraction of the

potential drop occurs.

Equation (2.56) can also be written differently. Conventional semicon-

ductor theory tells us that for a non-degenerate, n-type semiconductor

ns = N2De
(Fn−Ec)/kBTL

N2D = gv
m∗kBTL
π~2

Fn = Ec + kBTL ln
N2D

ns

σn = nsqµn .

(2.58)

(Note that the units of the 2D conductivity, σn, are Siemens or 1/Ω.) Using

eqns. (2.58), the current equation, (2.56) becomes

Jnx = nsqµnEx + qDn
dns

dx
, (2.59)

where

Dn

µn
=
kBTL
q

(2.60)
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is the Einstein relation. Equation (2.59) is the well-known “drift-diffusion”

equation, which is often the starting point for analyzing semiconductor

devices [4]. We see that it assumes steady-state, near-equilibrium, non-

degenerate conditions (and we have also assumed a uniform temperature

along the resistor).

Finally, you may be wondering: “What about holes?” In standard

semiconductor physics, the conduction and valence bands are described by

two different electrochemical potentials (or quasi-Fermi levels), Fn and Fp.

This occurs because we have two separate populations of carriers that

are in equilibrium with carriers in the same band but not with carriers in

the other band. The recombination-generation processes that couple the

two populations are typically slow in comparison to the scattering processes

that establish equilibrium within each band. For electrons in the conduction

band, we have

Jnx = σn
d(Fn/q)

dx

σn =

∫

q2Dn(E)D2D(E)

(

− ∂f0
∂EF

)

dE

f0 =
1

1 + e(E−Fn(x))/kBTL
,

(2.61)

and for electrons in the valence band, we have

Jpx = σp
d(Fp/q)

dx

σp =

∫

q2Dp(E)D2D(E)

(

− ∂f0
∂EF

)

dE

f0 =
1

1 + e(E−Fp(x))/kBTL
.

(2.62)

The total current is the sum of the contributions from each band. It is

important to note that these equations refer to electrons in both the con-

duction and valence bands. The occupation factor, f0, describes the prob-

ability that an electron state is occupied. It is often useful to visualize the

resulting current flow in the valence band in terms of holes, but the expres-

sions that we used were derived for electrons, and we did not inquire as to

whether they were in the conduction or valence bands because it does not

matter.
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2.7 Summary

This has been a long lecture, but the final result is a simple one that we

shall see is very powerful. Equation (2.51) describes the conductance of

a linear resistor very generally. The conductance is proportional to some

fundamental constants, (2q2/h), which we will see in the next lecture is

the “quantum of conductance”, that is associated with the contacts. The

conductance is related to the number of conducting channels at energy,

E, M(E), and to the transmission, T (E), which is the probability that

an electron with energy, E, injected from one contact exits to the other

contact. We find the total conductance by integrating the contributions

of all of the energy channels. Equation (2.51) is valid in 1D, 2D, or 3D

— we simply need to use the correct expressions for M(E). It is valid for

very short (ballistic) resistors or very long (diffusive) resistors and for the

region in between. The next lecture will begin with eqn. (2.51). Finally, it

should be mentioned, that we have assumed isothermal conditions — the

two contacts are at the same temperature. The implications of temperature

gradients will be discussed in Lectures 4 and 5.
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