1 | /* -*- mode: c++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
---|
2 | /* |
---|
3 | * Copyright (C) 2004-2012 HUBzero Foundation, LLC |
---|
4 | * |
---|
5 | * Author: Leif Delgass <ldelgass@purdue.edu> |
---|
6 | */ |
---|
7 | |
---|
8 | #ifndef VTKVIS_MATH_H |
---|
9 | #define VTKVIS_MATH_H |
---|
10 | |
---|
11 | #include <cmath> |
---|
12 | #include <cstring> |
---|
13 | |
---|
14 | #include <vtkMath.h> |
---|
15 | #include <vtkMatrix4x4.h> |
---|
16 | |
---|
17 | namespace VtkVis { |
---|
18 | |
---|
19 | /** |
---|
20 | * \brief Convert a quaternion to an axis/angle rotation |
---|
21 | * |
---|
22 | * \param[in] quat Quaternion with scalar first: wxyz |
---|
23 | * \param[out] angleAxis axis/angle rotation with angle in degrees first |
---|
24 | */ |
---|
25 | inline void quatToAngleAxis(const double quat[4], double angleAxis[4]) |
---|
26 | { |
---|
27 | angleAxis[0] = vtkMath::DegreesFromRadians(2.0 * acos(quat[0])); |
---|
28 | if (angleAxis[0] < 1.0e-6) { |
---|
29 | angleAxis[1] = 1; |
---|
30 | angleAxis[2] = 0; |
---|
31 | angleAxis[3] = 0; |
---|
32 | } else { |
---|
33 | double denom = sqrt(1. - quat[0] * quat[0]); |
---|
34 | angleAxis[1] = quat[1] / denom; |
---|
35 | angleAxis[2] = quat[2] / denom; |
---|
36 | angleAxis[3] = quat[3] / denom; |
---|
37 | } |
---|
38 | } |
---|
39 | |
---|
40 | /** |
---|
41 | * \brief Convert an axis/angle rotation to a quaternion |
---|
42 | * |
---|
43 | * \param[in] angleAxis axis/angle rotation with angle in degrees first |
---|
44 | * \param[out] quat Quaternion with scalar first: wxyz |
---|
45 | */ |
---|
46 | inline void angleAxisToQuat(const double angleAxis[4], double quat[4]) |
---|
47 | { |
---|
48 | quat[0] = cos(vtkMath::RadiansFromDegrees(angleAxis[0]) / 2.0); |
---|
49 | double sinHalfAngle = sin(vtkMath::RadiansFromDegrees(angleAxis[0]) / 2.0); |
---|
50 | quat[1] = angleAxis[1] * sinHalfAngle; |
---|
51 | quat[2] = angleAxis[2] * sinHalfAngle; |
---|
52 | quat[3] = angleAxis[3] * sinHalfAngle; |
---|
53 | } |
---|
54 | |
---|
55 | /** |
---|
56 | * \brief Fill a vtkMatrix4x4 from a quaternion |
---|
57 | * |
---|
58 | * \param[in] quat Quaternion with scalar first: wxyz |
---|
59 | * \param[out] mat Matrix to be filled in |
---|
60 | */ |
---|
61 | inline void quaternionToMatrix4x4(const double quat[4], vtkMatrix4x4& mat) |
---|
62 | { |
---|
63 | double ww = quat[0]*quat[0]; |
---|
64 | double wx = quat[0]*quat[1]; |
---|
65 | double wy = quat[0]*quat[2]; |
---|
66 | double wz = quat[0]*quat[3]; |
---|
67 | |
---|
68 | double xx = quat[1]*quat[1]; |
---|
69 | double yy = quat[2]*quat[2]; |
---|
70 | double zz = quat[3]*quat[3]; |
---|
71 | |
---|
72 | double xy = quat[1]*quat[2]; |
---|
73 | double xz = quat[1]*quat[3]; |
---|
74 | double yz = quat[2]*quat[3]; |
---|
75 | |
---|
76 | double rr = xx + yy + zz; |
---|
77 | // normalization factor, just in case quaternion was not normalized |
---|
78 | double f = double(1)/double(sqrt(ww + rr)); |
---|
79 | double s = (ww - rr)*f; |
---|
80 | f *= 2; |
---|
81 | |
---|
82 | mat[0][0] = xx*f + s; |
---|
83 | mat[1][0] = (xy + wz)*f; |
---|
84 | mat[2][0] = (xz - wy)*f; |
---|
85 | |
---|
86 | mat[0][1] = (xy - wz)*f; |
---|
87 | mat[1][1] = yy*f + s; |
---|
88 | mat[2][1] = (yz + wx)*f; |
---|
89 | |
---|
90 | mat[0][2] = (xz + wy)*f; |
---|
91 | mat[1][2] = (yz - wx)*f; |
---|
92 | mat[2][2] = zz*f + s; |
---|
93 | } |
---|
94 | |
---|
95 | /** |
---|
96 | * \brief Fill a vtkMatrix4x4 from a quaternion, but with the matrix |
---|
97 | * transposed. |
---|
98 | * |
---|
99 | * \param[in] quat Quaternion with scalar first: wxyz |
---|
100 | * \param[out] mat Matrix to be filled in |
---|
101 | */ |
---|
102 | inline void quaternionToTransposeMatrix4x4(const double quat[4], vtkMatrix4x4& mat) |
---|
103 | { |
---|
104 | double ww = quat[0]*quat[0]; |
---|
105 | double wx = quat[0]*quat[1]; |
---|
106 | double wy = quat[0]*quat[2]; |
---|
107 | double wz = quat[0]*quat[3]; |
---|
108 | |
---|
109 | double xx = quat[1]*quat[1]; |
---|
110 | double yy = quat[2]*quat[2]; |
---|
111 | double zz = quat[3]*quat[3]; |
---|
112 | |
---|
113 | double xy = quat[1]*quat[2]; |
---|
114 | double xz = quat[1]*quat[3]; |
---|
115 | double yz = quat[2]*quat[3]; |
---|
116 | |
---|
117 | double rr = xx + yy + zz; |
---|
118 | // normalization factor, just in case quaternion was not normalized |
---|
119 | double f = double(1)/double(sqrt(ww + rr)); |
---|
120 | double s = (ww - rr)*f; |
---|
121 | f *= 2; |
---|
122 | |
---|
123 | mat[0][0] = xx*f + s; |
---|
124 | mat[0][1] = (xy + wz)*f; |
---|
125 | mat[0][2] = (xz - wy)*f; |
---|
126 | |
---|
127 | mat[1][0] = (xy - wz)*f; |
---|
128 | mat[1][1] = yy*f + s; |
---|
129 | mat[1][2] = (yz + wx)*f; |
---|
130 | |
---|
131 | mat[2][0] = (xz + wy)*f; |
---|
132 | mat[2][1] = (yz - wx)*f; |
---|
133 | mat[2][2] = zz*f + s; |
---|
134 | } |
---|
135 | |
---|
136 | /** |
---|
137 | * \brief Multiply two quaternions and return the result |
---|
138 | * |
---|
139 | * Note: result can be the same memory location as one of the |
---|
140 | * inputs |
---|
141 | */ |
---|
142 | inline double *quatMult(const double q1[4], const double q2[4], double result[4]) |
---|
143 | { |
---|
144 | double q1w = q1[0]; |
---|
145 | double q1x = q1[1]; |
---|
146 | double q1y = q1[2]; |
---|
147 | double q1z = q1[3]; |
---|
148 | double q2w = q2[0]; |
---|
149 | double q2x = q2[1]; |
---|
150 | double q2y = q2[2]; |
---|
151 | double q2z = q2[3]; |
---|
152 | result[0] = (q1w*q2w) - (q1x*q2x) - (q1y*q2y) - (q1z*q2z); |
---|
153 | result[1] = (q1w*q2x) + (q1x*q2w) + (q1y*q2z) - (q1z*q2y); |
---|
154 | result[2] = (q1w*q2y) + (q1y*q2w) + (q1z*q2x) - (q1x*q2z); |
---|
155 | result[3] = (q1w*q2z) + (q1z*q2w) + (q1x*q2y) - (q1y*q2x); |
---|
156 | return result; |
---|
157 | } |
---|
158 | |
---|
159 | /** |
---|
160 | * \brief Compute the conjugate of a quaternion |
---|
161 | * |
---|
162 | * Note: result can be the same memory location as the input |
---|
163 | */ |
---|
164 | inline double *quatConjugate(const double quat[4], double result[4]) |
---|
165 | { |
---|
166 | if (result != quat) |
---|
167 | result[0] = quat[0]; |
---|
168 | result[1] = -quat[1]; |
---|
169 | result[2] = -quat[2]; |
---|
170 | result[3] = -quat[3]; |
---|
171 | return result; |
---|
172 | } |
---|
173 | |
---|
174 | /** |
---|
175 | * \brief Compute the reciprocal of a quaternion |
---|
176 | * |
---|
177 | * Note: result can be the same memory location as the input |
---|
178 | */ |
---|
179 | inline double *quatReciprocal(const double quat[4], double result[4]) |
---|
180 | { |
---|
181 | double denom = |
---|
182 | quat[0]*quat[0] + |
---|
183 | quat[1]*quat[1] + |
---|
184 | quat[2]*quat[2] + |
---|
185 | quat[3]*quat[3]; |
---|
186 | VtkVis::quatConjugate(quat, result); |
---|
187 | for (int i = 0; i < 4; i++) { |
---|
188 | result[i] /= denom; |
---|
189 | } |
---|
190 | return result; |
---|
191 | } |
---|
192 | |
---|
193 | /** |
---|
194 | * \brief Compute the reciprocal of a quaternion in place |
---|
195 | */ |
---|
196 | inline double *quatReciprocal(double quat[4]) |
---|
197 | { |
---|
198 | return VtkVis::quatReciprocal(quat, quat); |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * \brief Deep copy a quaternion |
---|
203 | */ |
---|
204 | inline void copyQuat(const double quat[4], double result[4]) |
---|
205 | { |
---|
206 | memcpy(result, quat, sizeof(double)*4); |
---|
207 | } |
---|
208 | |
---|
209 | inline double min2(double a, double b) |
---|
210 | { |
---|
211 | return ((a < b) ? a : b); |
---|
212 | } |
---|
213 | |
---|
214 | inline double max2(double a, double b) |
---|
215 | { |
---|
216 | return ((a > b) ? a : b); |
---|
217 | } |
---|
218 | |
---|
219 | inline double min3(double a, double b, double c) |
---|
220 | { |
---|
221 | return min2(min2(a, b), c); |
---|
222 | } |
---|
223 | |
---|
224 | inline double max3(double a, double b, double c) |
---|
225 | { |
---|
226 | return max2(max2(a, b), c); |
---|
227 | } |
---|
228 | |
---|
229 | } |
---|
230 | |
---|
231 | #endif |
---|