1 | |
---|
2 | /* |
---|
3 | * bltHash.c -- |
---|
4 | * |
---|
5 | * |
---|
6 | * This module implements an in-memory hash table for the BLT |
---|
7 | * toolkit. Built upon the Tcl hash table, it adds pool |
---|
8 | * allocation 64-bit address handling, improved array hash |
---|
9 | * function. |
---|
10 | * |
---|
11 | * Copyright 2001 Silicon Metrics Corporation. |
---|
12 | * |
---|
13 | * Permission to use, copy, modify, and distribute this software and |
---|
14 | * its documentation for any purpose and without fee is hereby |
---|
15 | * granted, provided that the above copyright notice appear in all |
---|
16 | * copies and that both that the copyright notice and warranty |
---|
17 | * disclaimer appear in supporting documentation, and that the names |
---|
18 | * of Lucent Technologies any of their entities not be used in |
---|
19 | * advertising or publicity pertaining to distribution of the software |
---|
20 | * without specific, written prior permission. |
---|
21 | * |
---|
22 | * Silicon Metrics disclaims all warranties with regard to this |
---|
23 | * software, including all implied warranties of merchantability and |
---|
24 | * fitness. In no event shall Lucent Technologies be liable for any |
---|
25 | * special, indirect or consequential damages or any damages |
---|
26 | * whatsoever resulting from loss of use, data or profits, whether in |
---|
27 | * an action of contract, negligence or other tortuous action, arising |
---|
28 | * out of or in connection with the use or performance of this |
---|
29 | * software. |
---|
30 | * |
---|
31 | * Bob Jenkins, 1996. hash.c. Public Domain. |
---|
32 | * Bob Jenkins, 1997. lookup8.c. Public Domain. |
---|
33 | * |
---|
34 | * Copyright (c) 1991-1993 The Regents of the University of California. |
---|
35 | * Copyright (c) 1994 Sun Microsystems, Inc. |
---|
36 | * |
---|
37 | * See the file "license.terms" for information on usage and redistribution |
---|
38 | * of this file, and for a DISCLAIMER OF ALL WARRANTIES. |
---|
39 | * |
---|
40 | * RCS: @(#) $Id: bltHash.c,v 1.10 2002/08/09 07:15:18 ghowlett Exp $ |
---|
41 | */ |
---|
42 | |
---|
43 | #include <RpInt.h> |
---|
44 | |
---|
45 | #include <stdio.h> |
---|
46 | #include <string.h> |
---|
47 | /* The following header is required for LP64 compilation */ |
---|
48 | #include <stdlib.h> |
---|
49 | |
---|
50 | #include "RpHash.h" |
---|
51 | |
---|
52 | /* |
---|
53 | * When there are this many entries per bucket, on average, rebuild |
---|
54 | * the hash table to make it larger. |
---|
55 | */ |
---|
56 | |
---|
57 | #define REBUILD_MULTIPLIER 3 |
---|
58 | |
---|
59 | #if (SIZEOF_VOID_P == 8) |
---|
60 | #define RANDOM_INDEX HashOneWord |
---|
61 | #define DOWNSHIFT_START 62 |
---|
62 | #else |
---|
63 | |
---|
64 | /* |
---|
65 | * The following macro takes a preliminary integer hash value and |
---|
66 | * produces an index into a hash tables bucket list. The idea is |
---|
67 | * to make it so that preliminary values that are arbitrarily similar |
---|
68 | * will end up in different buckets. The hash function was taken |
---|
69 | * from a random-number generator. |
---|
70 | */ |
---|
71 | #define RANDOM_INDEX(tablePtr, i) \ |
---|
72 | (((((long) (i))*1103515245) >> (tablePtr)->downShift) & (tablePtr)->mask) |
---|
73 | #define DOWNSHIFT_START 28 |
---|
74 | #endif |
---|
75 | |
---|
76 | /* |
---|
77 | * Procedure prototypes for static procedures in this file: |
---|
78 | */ |
---|
79 | static Rp_Hash HashArray _ANSI_ARGS_((CONST void *key, size_t length)); |
---|
80 | static Rp_HashEntry *ArrayFind _ANSI_ARGS_((Rp_HashTable *tablePtr, |
---|
81 | CONST void *key)); |
---|
82 | static Rp_HashEntry *ArrayCreate _ANSI_ARGS_((Rp_HashTable *tablePtr, |
---|
83 | CONST void *key, int *newPtr)); |
---|
84 | static Rp_HashEntry *BogusFind _ANSI_ARGS_((Rp_HashTable *tablePtr, |
---|
85 | CONST void *key)); |
---|
86 | static Rp_HashEntry *BogusCreate _ANSI_ARGS_((Rp_HashTable *tablePtr, |
---|
87 | CONST void *key, int *newPtr)); |
---|
88 | static Rp_Hash HashString _ANSI_ARGS_((CONST char *string)); |
---|
89 | static void RebuildTable _ANSI_ARGS_((Rp_HashTable *tablePtr)); |
---|
90 | static Rp_HashEntry *StringFind _ANSI_ARGS_((Rp_HashTable *tablePtr, |
---|
91 | CONST void *key)); |
---|
92 | static Rp_HashEntry *StringCreate _ANSI_ARGS_((Rp_HashTable *tablePtr, |
---|
93 | CONST void *key, int *newPtr)); |
---|
94 | static Rp_HashEntry *OneWordFind _ANSI_ARGS_((Rp_HashTable *tablePtr, |
---|
95 | CONST void *key)); |
---|
96 | static Rp_HashEntry *OneWordCreate _ANSI_ARGS_((Rp_HashTable *tablePtr, |
---|
97 | CONST void *key, int *newPtr)); |
---|
98 | |
---|
99 | #if (SIZEOF_VOID_P == 8) |
---|
100 | static Rp_Hash HashOneWord _ANSI_ARGS_((Rp_HashTable *tablePtr, |
---|
101 | CONST void *key)); |
---|
102 | |
---|
103 | #endif /* SIZEOF_VOID_P == 8 */ |
---|
104 | |
---|
105 | /* |
---|
106 | *---------------------------------------------------------------------- |
---|
107 | * |
---|
108 | * HashString -- |
---|
109 | * |
---|
110 | * Compute a one-word summary of a text string, which can be |
---|
111 | * used to generate a hash index. |
---|
112 | * |
---|
113 | * Results: |
---|
114 | * The return value is a one-word summary of the information in |
---|
115 | * string. |
---|
116 | * |
---|
117 | * Side effects: |
---|
118 | * None. |
---|
119 | * |
---|
120 | *---------------------------------------------------------------------- |
---|
121 | */ |
---|
122 | static Rp_Hash |
---|
123 | HashString(register CONST char *string) /* String from which to |
---|
124 | * compute hash value. */ |
---|
125 | { |
---|
126 | register Rp_Hash result; |
---|
127 | register Rp_Hash c; |
---|
128 | |
---|
129 | /* |
---|
130 | * I tried a zillion different hash functions and asked many other |
---|
131 | * people for advice. Many people had their own favorite functions, |
---|
132 | * all different, but no-one had much idea why they were good ones. |
---|
133 | * I chose the one below (multiply by 9 and add new character) |
---|
134 | * because of the following reasons: |
---|
135 | * |
---|
136 | * 1. Multiplying by 10 is perfect for keys that are decimal strings, |
---|
137 | * and multiplying by 9 is just about as good. |
---|
138 | * 2. Times-9 is (shift-left-3) plus (old). This means that each |
---|
139 | * character's bits hang around in the low-order bits of the |
---|
140 | * hash value for ever, plus they spread fairly rapidly up to |
---|
141 | * the high-order bits to fill out the hash value. This seems |
---|
142 | * to work well both for decimal and non-decimal strings. |
---|
143 | */ |
---|
144 | |
---|
145 | result = 0; |
---|
146 | while ((c = *string++) != 0) { |
---|
147 | result += (result << 3) + c; |
---|
148 | } |
---|
149 | return (Rp_Hash)result; |
---|
150 | } |
---|
151 | |
---|
152 | /* |
---|
153 | *---------------------------------------------------------------------- |
---|
154 | * |
---|
155 | * StringFind -- |
---|
156 | * |
---|
157 | * Given a hash table with string keys, and a string key, find |
---|
158 | * the entry with a matching key. |
---|
159 | * |
---|
160 | * Results: |
---|
161 | * The return value is a token for the matching entry in the |
---|
162 | * hash table, or NULL if there was no matching entry. |
---|
163 | * |
---|
164 | * Side effects: |
---|
165 | * None. |
---|
166 | * |
---|
167 | *---------------------------------------------------------------------- |
---|
168 | */ |
---|
169 | static Rp_HashEntry * |
---|
170 | StringFind( |
---|
171 | Rp_HashTable *tablePtr, /* Table in which to lookup entry. */ |
---|
172 | CONST void *key) /* Key to use to find matching entry. */ |
---|
173 | { |
---|
174 | Rp_Hash hval; |
---|
175 | register Rp_HashEntry *hPtr; |
---|
176 | size_t hindex; |
---|
177 | |
---|
178 | hval = HashString((char *)key); |
---|
179 | hindex = hval & tablePtr->mask; |
---|
180 | |
---|
181 | /* |
---|
182 | * Search all of the entries in the appropriate bucket. |
---|
183 | */ |
---|
184 | |
---|
185 | for (hPtr = tablePtr->buckets[hindex]; hPtr != NULL; |
---|
186 | hPtr = hPtr->nextPtr) { |
---|
187 | if (hPtr->hval == hval) { |
---|
188 | register CONST char *p1, *p2; |
---|
189 | |
---|
190 | for (p1 = key, p2 = hPtr->key.string; ; p1++, p2++) { |
---|
191 | if (*p1 != *p2) { |
---|
192 | break; |
---|
193 | } |
---|
194 | if (*p1 == '\0') { |
---|
195 | return hPtr; |
---|
196 | } |
---|
197 | } |
---|
198 | } |
---|
199 | } |
---|
200 | return NULL; |
---|
201 | } |
---|
202 | |
---|
203 | /* |
---|
204 | *---------------------------------------------------------------------- |
---|
205 | * |
---|
206 | * StringCreate -- |
---|
207 | * |
---|
208 | * Given a hash table with string keys, and a string key, find |
---|
209 | * the entry with a matching key. If there is no matching entry, |
---|
210 | * then create a new entry that does match. |
---|
211 | * |
---|
212 | * Results: |
---|
213 | * The return value is a pointer to the matching entry. If this |
---|
214 | * is a newly-created entry, then *newPtr will be set to a non-zero |
---|
215 | * value; otherwise *newPtr will be set to 0. If this is a new |
---|
216 | * entry the value stored in the entry will initially be 0. |
---|
217 | * |
---|
218 | * Side effects: |
---|
219 | * A new entry may be added to the hash table. |
---|
220 | * |
---|
221 | *---------------------------------------------------------------------- |
---|
222 | */ |
---|
223 | static Rp_HashEntry * |
---|
224 | StringCreate( |
---|
225 | Rp_HashTable *tablePtr, /* Table in which to lookup entry. */ |
---|
226 | CONST void *key, /* Key to use to find or create matching |
---|
227 | * entry. */ |
---|
228 | int *newPtr) /* Store info here telling whether a new |
---|
229 | * entry was created. */ |
---|
230 | { |
---|
231 | Rp_Hash hval; |
---|
232 | Rp_HashEntry **bucketPtr; |
---|
233 | register Rp_HashEntry *hPtr; |
---|
234 | size_t size, hindex; |
---|
235 | |
---|
236 | hval = HashString(key); |
---|
237 | hindex = hval & tablePtr->mask; |
---|
238 | |
---|
239 | /* |
---|
240 | * Search all of the entries in this bucket. |
---|
241 | */ |
---|
242 | |
---|
243 | for (hPtr = tablePtr->buckets[hindex]; hPtr != NULL; |
---|
244 | hPtr = hPtr->nextPtr) { |
---|
245 | if (hPtr->hval == hval) { |
---|
246 | register CONST char *p1, *p2; |
---|
247 | |
---|
248 | for (p1 = key, p2 = hPtr->key.string; ; p1++, p2++) { |
---|
249 | if (*p1 != *p2) { |
---|
250 | break; |
---|
251 | } |
---|
252 | if (*p1 == '\0') { |
---|
253 | *newPtr = FALSE; |
---|
254 | return hPtr; |
---|
255 | } |
---|
256 | } |
---|
257 | } |
---|
258 | } |
---|
259 | |
---|
260 | /* |
---|
261 | * Entry not found. Add a new one to the bucket. |
---|
262 | */ |
---|
263 | |
---|
264 | *newPtr = TRUE; |
---|
265 | size = sizeof(Rp_HashEntry) + strlen(key) - sizeof(Rp_HashKey) + 1; |
---|
266 | if (tablePtr->hPool != NULL) { |
---|
267 | hPtr = Rp_PoolAllocItem(tablePtr->hPool, size); |
---|
268 | } else { |
---|
269 | hPtr = Rp_Malloc(size); |
---|
270 | } |
---|
271 | bucketPtr = tablePtr->buckets + hindex; |
---|
272 | hPtr->nextPtr = *bucketPtr; |
---|
273 | hPtr->hval = hval; |
---|
274 | hPtr->clientData = 0; |
---|
275 | strcpy(hPtr->key.string, key); |
---|
276 | *bucketPtr = hPtr; |
---|
277 | tablePtr->numEntries++; |
---|
278 | |
---|
279 | /* |
---|
280 | * If the table has exceeded a decent size, rebuild it with many |
---|
281 | * more buckets. |
---|
282 | */ |
---|
283 | |
---|
284 | if (tablePtr->numEntries >= tablePtr->rebuildSize) { |
---|
285 | RebuildTable(tablePtr); |
---|
286 | } |
---|
287 | return hPtr; |
---|
288 | } |
---|
289 | |
---|
290 | #if (SIZEOF_VOID_P == 8) |
---|
291 | /* |
---|
292 | *---------------------------------------------------------------------- |
---|
293 | * |
---|
294 | * HashOneWord -- |
---|
295 | * |
---|
296 | * Compute a one-word hash value of a 64-bit word, which then can |
---|
297 | * be used to generate a hash index. |
---|
298 | * |
---|
299 | * From Knuth, it's a multiplicative hash. Multiplies an unsigned |
---|
300 | * 64-bit value with the golden ratio (sqrt(5) - 1) / 2. The |
---|
301 | * downshift value is 64 - n, when n is the log2 of the size of |
---|
302 | * the hash table. |
---|
303 | * |
---|
304 | * Results: |
---|
305 | * The return value is a one-word summary of the information in |
---|
306 | * 64 bit word. |
---|
307 | * |
---|
308 | * Side effects: |
---|
309 | * None. |
---|
310 | * |
---|
311 | *---------------------------------------------------------------------- |
---|
312 | */ |
---|
313 | static Rp_Hash |
---|
314 | HashOneWord( |
---|
315 | Rp_HashTable *tablePtr, |
---|
316 | CONST void *key) |
---|
317 | { |
---|
318 | uint64_t a0, a1; |
---|
319 | uint64_t y0, y1; |
---|
320 | uint64_t y2, y3; |
---|
321 | uint64_t p1, p2; |
---|
322 | uint64_t result; |
---|
323 | /* Compute key * GOLDEN_RATIO in 128-bit arithmetic */ |
---|
324 | a0 = (uint64_t)key & 0x00000000FFFFFFFF; |
---|
325 | a1 = (uint64_t)key >> 32; |
---|
326 | |
---|
327 | y0 = a0 * 0x000000007f4a7c13; |
---|
328 | y1 = a0 * 0x000000009e3779b9; |
---|
329 | y2 = a1 * 0x000000007f4a7c13; |
---|
330 | y3 = a1 * 0x000000009e3779b9; |
---|
331 | y1 += y0 >> 32; /* Can't carry */ |
---|
332 | y1 += y2; /* Might carry */ |
---|
333 | if (y1 < y2) { |
---|
334 | y3 += (1LL << 32); /* Propagate */ |
---|
335 | } |
---|
336 | |
---|
337 | /* 128-bit product: p1 = loword, p2 = hiword */ |
---|
338 | p1 = ((y1 & 0x00000000FFFFFFFF) << 32) + (y0 & 0x00000000FFFFFFFF); |
---|
339 | p2 = y3 + (y1 >> 32); |
---|
340 | |
---|
341 | /* Left shift the value downward by the size of the table */ |
---|
342 | if (tablePtr->downShift > 0) { |
---|
343 | if (tablePtr->downShift < 64) { |
---|
344 | result = ((p2 << (64 - tablePtr->downShift)) | |
---|
345 | (p1 >> (tablePtr->downShift & 63))); |
---|
346 | } else { |
---|
347 | result = p2 >> (tablePtr->downShift & 63); |
---|
348 | } |
---|
349 | } else { |
---|
350 | result = p1; |
---|
351 | } |
---|
352 | /* Finally mask off the high bits */ |
---|
353 | return (Rp_Hash)(result & tablePtr->mask); |
---|
354 | } |
---|
355 | |
---|
356 | #endif /* SIZEOF_VOID_P == 8 */ |
---|
357 | |
---|
358 | /* |
---|
359 | *---------------------------------------------------------------------- |
---|
360 | * |
---|
361 | * OneWordFind -- |
---|
362 | * |
---|
363 | * Given a hash table with one-word keys, and a one-word key, |
---|
364 | * find the entry with a matching key. |
---|
365 | * |
---|
366 | * Results: |
---|
367 | * The return value is a token for the matching entry in the |
---|
368 | * hash table, or NULL if there was no matching entry. |
---|
369 | * |
---|
370 | * Side effects: |
---|
371 | * None. |
---|
372 | * |
---|
373 | *---------------------------------------------------------------------- |
---|
374 | */ |
---|
375 | static Rp_HashEntry * |
---|
376 | OneWordFind( |
---|
377 | Rp_HashTable *tablePtr, /* Table in which to lookup entry. */ |
---|
378 | register CONST void *key) /* Key to use to find matching entry. */ |
---|
379 | { |
---|
380 | register Rp_HashEntry *hPtr; |
---|
381 | size_t hindex; |
---|
382 | |
---|
383 | hindex = RANDOM_INDEX(tablePtr, key); |
---|
384 | |
---|
385 | /* |
---|
386 | * Search all of the entries in the appropriate bucket. |
---|
387 | */ |
---|
388 | for (hPtr = tablePtr->buckets[hindex]; hPtr != NULL; |
---|
389 | hPtr = hPtr->nextPtr) { |
---|
390 | if (hPtr->key.oneWordValue == key) { |
---|
391 | return hPtr; |
---|
392 | } |
---|
393 | } |
---|
394 | return NULL; |
---|
395 | } |
---|
396 | |
---|
397 | /* |
---|
398 | *---------------------------------------------------------------------- |
---|
399 | * |
---|
400 | * OneWordCreate -- |
---|
401 | * |
---|
402 | * Given a hash table with one-word keys, and a one-word key, find |
---|
403 | * the entry with a matching key. If there is no matching entry, |
---|
404 | * then create a new entry that does match. |
---|
405 | * |
---|
406 | * Results: |
---|
407 | * The return value is a pointer to the matching entry. If this |
---|
408 | * is a newly-created entry, then *newPtr will be set to a non-zero |
---|
409 | * value; otherwise *newPtr will be set to 0. If this is a new |
---|
410 | * entry the value stored in the entry will initially be 0. |
---|
411 | * |
---|
412 | * Side effects: |
---|
413 | * A new entry may be added to the hash table. |
---|
414 | * |
---|
415 | *---------------------------------------------------------------------- |
---|
416 | */ |
---|
417 | static Rp_HashEntry * |
---|
418 | OneWordCreate( |
---|
419 | Rp_HashTable *tablePtr, /* Table in which to lookup entry. */ |
---|
420 | CONST void *key, /* Key to use to find or create matching |
---|
421 | * entry. */ |
---|
422 | int *newPtr) /* Store info here telling whether a new |
---|
423 | * entry was created. */ |
---|
424 | { |
---|
425 | Rp_HashEntry **bucketPtr; |
---|
426 | register Rp_HashEntry *hPtr; |
---|
427 | size_t hindex; |
---|
428 | |
---|
429 | hindex = RANDOM_INDEX(tablePtr, key); |
---|
430 | |
---|
431 | /* |
---|
432 | * Search all of the entries in this bucket. |
---|
433 | */ |
---|
434 | for (hPtr = tablePtr->buckets[hindex]; hPtr != NULL; |
---|
435 | hPtr = hPtr->nextPtr) { |
---|
436 | if (hPtr->key.oneWordValue == key) { |
---|
437 | *newPtr = FALSE; |
---|
438 | return hPtr; |
---|
439 | } |
---|
440 | } |
---|
441 | |
---|
442 | /* |
---|
443 | * Entry not found. Add a new one to the bucket. |
---|
444 | */ |
---|
445 | |
---|
446 | *newPtr = TRUE; |
---|
447 | if (tablePtr->hPool != NULL) { |
---|
448 | hPtr = Rp_PoolAllocItem(tablePtr->hPool, sizeof(Rp_HashEntry)); |
---|
449 | } else { |
---|
450 | hPtr = Rp_Malloc(sizeof(Rp_HashEntry)); |
---|
451 | } |
---|
452 | bucketPtr = tablePtr->buckets + hindex; |
---|
453 | hPtr->nextPtr = *bucketPtr; |
---|
454 | hPtr->hval = (Rp_Hash)key; |
---|
455 | hPtr->clientData = 0; |
---|
456 | hPtr->key.oneWordValue = (void *)key; /* CONST XXXX */ |
---|
457 | *bucketPtr = hPtr; |
---|
458 | tablePtr->numEntries++; |
---|
459 | |
---|
460 | /* |
---|
461 | * If the table has exceeded a decent size, rebuild it with many |
---|
462 | * more buckets. |
---|
463 | */ |
---|
464 | |
---|
465 | if (tablePtr->numEntries >= tablePtr->rebuildSize) { |
---|
466 | RebuildTable(tablePtr); |
---|
467 | } |
---|
468 | return hPtr; |
---|
469 | } |
---|
470 | |
---|
471 | |
---|
472 | #if (SIZEOF_VOID_P == 4) |
---|
473 | /* |
---|
474 | * -------------------------------------------------------------------- |
---|
475 | * |
---|
476 | * MIX32 -- |
---|
477 | * |
---|
478 | * Bob Jenkins, 1996. Public Domain. |
---|
479 | * |
---|
480 | * Mix 3 32/64-bit values reversibly. For every delta with one or |
---|
481 | * two bit set, and the deltas of all three high bits or all |
---|
482 | * three low bits, whether the original value of a,b,c is almost |
---|
483 | * all zero or is uniformly distributed, If mix() is run |
---|
484 | * forward or backward, at least 32 bits in a,b,c have at least |
---|
485 | * 1/4 probability of changing. * If mix() is run forward, every |
---|
486 | * bit of c will change between 1/3 and 2/3 of the time. (Well, |
---|
487 | * 22/100 and 78/100 for some 2-bit deltas.) mix() was built out |
---|
488 | * of 36 single-cycle latency instructions in a structure that |
---|
489 | * could supported 2x parallelism, like so: |
---|
490 | * |
---|
491 | * a -= b; |
---|
492 | * a -= c; x = (c>>13); |
---|
493 | * b -= c; a ^= x; |
---|
494 | * b -= a; x = (a<<8); |
---|
495 | * c -= a; b ^= x; |
---|
496 | * c -= b; x = (b>>13); |
---|
497 | * ... |
---|
498 | * |
---|
499 | * Unfortunately, superscalar Pentiums and Sparcs can't take |
---|
500 | * advantage of that parallelism. They've also turned some of |
---|
501 | * those single-cycle latency instructions into multi-cycle |
---|
502 | * latency instructions. Still, this is the fastest good hash I |
---|
503 | * could find. There were about 2^^68 to choose from. I only |
---|
504 | * looked at a billion or so. |
---|
505 | * |
---|
506 | * -------------------------------------------------------------------- |
---|
507 | */ |
---|
508 | #define MIX32(a,b,c) \ |
---|
509 | a -= b, a -= c, a ^= (c >> 13), \ |
---|
510 | b -= c, b -= a, b ^= (a << 8), \ |
---|
511 | c -= a, c -= b, c ^= (b >> 13), \ |
---|
512 | a -= b, a -= c, a ^= (c >> 12), \ |
---|
513 | b -= c, b -= a, b ^= (a << 16), \ |
---|
514 | c -= a, c -= b, c ^= (b >> 5), \ |
---|
515 | a -= b, a -= c, a ^= (c >> 3), \ |
---|
516 | b -= c, b -= a, b ^= (a << 10), \ |
---|
517 | c -= a, c -= b, c ^= (b >> 15) |
---|
518 | |
---|
519 | #define GOLDEN_RATIO32 0x9e3779b9 /* An arbitrary value */ |
---|
520 | |
---|
521 | /* |
---|
522 | * -------------------------------------------------------------------- |
---|
523 | * |
---|
524 | * HashArray -- |
---|
525 | * |
---|
526 | * Bob Jenkins, 1996. Public Domain. |
---|
527 | * |
---|
528 | * This works on all machines. Length has to be measured in |
---|
529 | * unsigned longs instead of bytes. It requires that |
---|
530 | * |
---|
531 | * o The key be an array of unsigned ints. |
---|
532 | * o All your machines have the same endianness |
---|
533 | * o The length be the number of unsigned ints in the key. |
---|
534 | * |
---|
535 | * -------------------------------------------------------------------- |
---|
536 | */ |
---|
537 | static Rp_Hash |
---|
538 | HashArray( |
---|
539 | CONST void *key, |
---|
540 | size_t length) /* Length of the key in 32-bit words */ |
---|
541 | { |
---|
542 | register uint32_t a, b, c, len; |
---|
543 | register uint32_t *arrayPtr = (uint32_t *)key; |
---|
544 | /* Set up the internal state */ |
---|
545 | len = length; |
---|
546 | a = b = GOLDEN_RATIO32; /* An arbitrary value */ |
---|
547 | c = 0; /* Previous hash value */ |
---|
548 | |
---|
549 | while (len >= 3) { /* Handle most of the key */ |
---|
550 | a += arrayPtr[0]; |
---|
551 | b += arrayPtr[1]; |
---|
552 | c += arrayPtr[2]; |
---|
553 | MIX32(a, b, c); |
---|
554 | arrayPtr += 3; len -= 3; |
---|
555 | } |
---|
556 | c += length; |
---|
557 | /* And now the last 2 words */ |
---|
558 | /* Note that all the case statements fall through */ |
---|
559 | switch(len) { |
---|
560 | /* c is reserved for the length */ |
---|
561 | case 2 : b += arrayPtr[1]; |
---|
562 | case 1 : a += arrayPtr[0]; |
---|
563 | /* case 0: nothing left to add */ |
---|
564 | } |
---|
565 | MIX32(a, b, c); |
---|
566 | return (Rp_Hash)c; |
---|
567 | } |
---|
568 | #endif /* SIZEOF_VOID_P == 4 */ |
---|
569 | |
---|
570 | #if (SIZEOF_VOID_P == 8) |
---|
571 | |
---|
572 | /* |
---|
573 | * -------------------------------------------------------------------- |
---|
574 | * |
---|
575 | * MIX64 -- |
---|
576 | * |
---|
577 | * Bob Jenkins, January 4 1997, Public Domain. You can use |
---|
578 | * this free for any purpose. It has no warranty. |
---|
579 | * |
---|
580 | * Returns a 64-bit value. Every bit of the key affects every |
---|
581 | * bit of the return value. No funnels. Every 1-bit and 2-bit |
---|
582 | * delta achieves avalanche. About 41+5len instructions. |
---|
583 | * |
---|
584 | * The best hash table sizes are powers of 2. There is no need |
---|
585 | * to do mod a prime (mod is sooo slow!). If you need less than |
---|
586 | * 64 bits, use a bitmask. For example, if you need only 10 |
---|
587 | * bits, do h = (h & hashmask(10)); In which case, the hash table |
---|
588 | * should have hashsize(10) elements. |
---|
589 | * |
---|
590 | * By Bob Jenkins, Jan 4 1997. bob_jenkins@burtleburtle.net. |
---|
591 | * You may use this code any way you wish, private, educational, |
---|
592 | * or commercial, as long as this whole comment accompanies it. |
---|
593 | * |
---|
594 | * See http://burtleburtle.net/bob/hash/evahash.html |
---|
595 | * Use for hash table lookup, or anything where one collision in |
---|
596 | * 2^^64 * is acceptable. Do NOT use for cryptographic purposes. |
---|
597 | * |
---|
598 | * -------------------------------------------------------------------- |
---|
599 | */ |
---|
600 | |
---|
601 | #define MIX64(a,b,c) \ |
---|
602 | a -= b, a -= c, a ^= (c >> 43), \ |
---|
603 | b -= c, b -= a, b ^= (a << 9), \ |
---|
604 | c -= a, c -= b, c ^= (b >> 8), \ |
---|
605 | a -= b, a -= c, a ^= (c >> 38), \ |
---|
606 | b -= c, b -= a, b ^= (a << 23), \ |
---|
607 | c -= a, c -= b, c ^= (b >> 5), \ |
---|
608 | a -= b, a -= c, a ^= (c >> 35), \ |
---|
609 | b -= c, b -= a, b ^= (a << 49), \ |
---|
610 | c -= a, c -= b, c ^= (b >> 11), \ |
---|
611 | a -= b, a -= c, a ^= (c >> 12), \ |
---|
612 | b -= c, b -= a, b ^= (a << 18), \ |
---|
613 | c -= a, c -= b, c ^= (b >> 22) |
---|
614 | |
---|
615 | #define GOLDEN_RATIO64 0x9e3779b97f4a7c13LL |
---|
616 | |
---|
617 | /* |
---|
618 | * -------------------------------------------------------------------- |
---|
619 | * |
---|
620 | * HashArray -- |
---|
621 | * |
---|
622 | * Bob Jenkins, January 4 1997, Public Domain. You can use |
---|
623 | * this free for any purpose. It has no warranty. |
---|
624 | * |
---|
625 | * This works on all machines. The length has to be measured in |
---|
626 | * 64 bit words, instead of bytes. It requires that |
---|
627 | * |
---|
628 | * o The key be an array of 64 bit words (unsigned longs). |
---|
629 | * o All your machines have the same endianness. |
---|
630 | * o The length be the number of 64 bit words in the key. |
---|
631 | * |
---|
632 | * -------------------------------------------------------------------- |
---|
633 | */ |
---|
634 | static Rp_Hash |
---|
635 | HashArray( |
---|
636 | CONST void *key, |
---|
637 | size_t length) /* Length of key in 32-bit words. */ |
---|
638 | { |
---|
639 | register uint64_t a, b, c, len; |
---|
640 | register uint32_t *iPtr = (uint32_t *)key; |
---|
641 | |
---|
642 | #ifdef WORDS_BIGENDIAN |
---|
643 | #define PACK(a,b) ((uint64_t)(b) | ((uint64_t)(a) << 32)) |
---|
644 | #else |
---|
645 | #define PACK(a,b) ((uint64_t)(a) | ((uint64_t)(b) << 32)) |
---|
646 | #endif |
---|
647 | /* Set up the internal state */ |
---|
648 | len = length; /* Length is the number of 64-bit words. */ |
---|
649 | a = b = GOLDEN_RATIO64; /* An arbitrary value */ |
---|
650 | c = 0; /* Previous hash value */ |
---|
651 | |
---|
652 | while (len >= 6) { /* Handle most of the key */ |
---|
653 | a += PACK(iPtr[0], iPtr[1]); |
---|
654 | b += PACK(iPtr[2], iPtr[3]); |
---|
655 | c += PACK(iPtr[4], iPtr[5]); |
---|
656 | MIX64(a,b,c); |
---|
657 | iPtr += 6; len -= 6; |
---|
658 | } |
---|
659 | c += length; |
---|
660 | /* And now the last 2 words */ |
---|
661 | /* Note that all the case statements fall through */ |
---|
662 | switch(len) { |
---|
663 | /* c is reserved for the length */ |
---|
664 | case 5 : |
---|
665 | case 4 : |
---|
666 | a += PACK(iPtr[0], iPtr[1]); |
---|
667 | b += PACK(iPtr[2], iPtr[3]); |
---|
668 | iPtr += 4; len -= 4; |
---|
669 | break; |
---|
670 | case 3 : |
---|
671 | case 2 : |
---|
672 | a += PACK(iPtr[0], iPtr[1]); |
---|
673 | iPtr += 2; len -= 2; |
---|
674 | /* case 0: nothing left to add */ |
---|
675 | } |
---|
676 | if (len > 0) { |
---|
677 | b += iPtr[0]; |
---|
678 | } |
---|
679 | MIX64(a,b,c); |
---|
680 | return (Rp_Hash)c; |
---|
681 | } |
---|
682 | #endif /* SIZEOF_VOID_P == 8 */ |
---|
683 | |
---|
684 | /* |
---|
685 | *---------------------------------------------------------------------- |
---|
686 | * |
---|
687 | * ArrayFind -- |
---|
688 | * |
---|
689 | * Given a hash table with array-of-int keys, and a key, find |
---|
690 | * the entry with a matching key. |
---|
691 | * |
---|
692 | * Results: |
---|
693 | * The return value is a token for the matching entry in the |
---|
694 | * hash table, or NULL if there was no matching entry. |
---|
695 | * |
---|
696 | * Side effects: |
---|
697 | * None. |
---|
698 | * |
---|
699 | *---------------------------------------------------------------------- |
---|
700 | */ |
---|
701 | static Rp_HashEntry * |
---|
702 | ArrayFind( |
---|
703 | Rp_HashTable *tablePtr, /* Table in which to lookup entry. */ |
---|
704 | CONST void *key) /* Key to use to find matching entry. */ |
---|
705 | { |
---|
706 | Rp_Hash hval; |
---|
707 | register Rp_HashEntry *hPtr; |
---|
708 | size_t hindex; |
---|
709 | |
---|
710 | hval = HashArray(key, tablePtr->keyType); |
---|
711 | hindex = hval & tablePtr->mask; |
---|
712 | /* |
---|
713 | * Search all of the entries in the appropriate bucket. |
---|
714 | */ |
---|
715 | |
---|
716 | for (hPtr = tablePtr->buckets[hindex]; hPtr != NULL; |
---|
717 | hPtr = hPtr->nextPtr) { |
---|
718 | if (hPtr->hval == hval) { |
---|
719 | register unsigned int *iPtr1, *iPtr2; |
---|
720 | unsigned int count; |
---|
721 | |
---|
722 | for (iPtr1 = (uint32_t *)key, iPtr2 = (uint32_t *)hPtr->key.words, |
---|
723 | count = tablePtr->keyType; ; count--, iPtr1++, iPtr2++) { |
---|
724 | if (count == 0) { |
---|
725 | return hPtr; |
---|
726 | } |
---|
727 | if (*iPtr1 != *iPtr2) { |
---|
728 | break; |
---|
729 | } |
---|
730 | } |
---|
731 | } |
---|
732 | } |
---|
733 | return NULL; |
---|
734 | } |
---|
735 | |
---|
736 | /* |
---|
737 | *---------------------------------------------------------------------- |
---|
738 | * |
---|
739 | * ArrayCreate -- |
---|
740 | * |
---|
741 | * Given a hash table with one-word keys, and a one-word key, find |
---|
742 | * the entry with a matching key. If there is no matching entry, |
---|
743 | * then create a new entry that does match. |
---|
744 | * |
---|
745 | * Results: |
---|
746 | * The return value is a pointer to the matching entry. If this |
---|
747 | * is a newly-created entry, then *newPtr will be set to a non-zero |
---|
748 | * value; otherwise *newPtr will be set to 0. If this is a new |
---|
749 | * entry the value stored in the entry will initially be 0. |
---|
750 | * |
---|
751 | * Side effects: |
---|
752 | * A new entry may be added to the hash table. |
---|
753 | * |
---|
754 | *---------------------------------------------------------------------- |
---|
755 | */ |
---|
756 | static Rp_HashEntry * |
---|
757 | ArrayCreate( |
---|
758 | Rp_HashTable *tablePtr, /* Table in which to lookup entry. */ |
---|
759 | register CONST void *key, /* Key to use to find or create matching |
---|
760 | * entry. */ |
---|
761 | int *newPtr) /* Store info here telling whether a new |
---|
762 | * entry was created. */ |
---|
763 | { |
---|
764 | Rp_Hash hval; |
---|
765 | Rp_HashEntry **bucketPtr; |
---|
766 | int count; |
---|
767 | register Rp_HashEntry *hPtr; |
---|
768 | register uint32_t *iPtr1, *iPtr2; |
---|
769 | size_t size, hindex; |
---|
770 | |
---|
771 | hval = HashArray(key, tablePtr->keyType); |
---|
772 | hindex = hval & tablePtr->mask; |
---|
773 | |
---|
774 | /* |
---|
775 | * Search all of the entries in the appropriate bucket. |
---|
776 | */ |
---|
777 | for (hPtr = tablePtr->buckets[hindex]; hPtr != NULL; |
---|
778 | hPtr = hPtr->nextPtr) { |
---|
779 | if (hPtr->hval == hval) { |
---|
780 | for (iPtr1 = (uint32_t *)key, iPtr2 = (uint32_t *)hPtr->key.words, |
---|
781 | count = tablePtr->keyType; ; count--, iPtr1++, iPtr2++) { |
---|
782 | if (count == 0) { |
---|
783 | *newPtr = FALSE; |
---|
784 | return hPtr; |
---|
785 | } |
---|
786 | if (*iPtr1 != *iPtr2) { |
---|
787 | break; |
---|
788 | } |
---|
789 | } |
---|
790 | } |
---|
791 | } |
---|
792 | |
---|
793 | /* |
---|
794 | * Entry not found. Add a new one to the bucket. |
---|
795 | */ |
---|
796 | *newPtr = TRUE; |
---|
797 | /* We assume here that the size of the key is at least 2 words */ |
---|
798 | size = sizeof(Rp_HashEntry) + tablePtr->keyType * sizeof(uint32_t) - |
---|
799 | sizeof(Rp_HashKey); |
---|
800 | if (tablePtr->hPool != NULL) { |
---|
801 | hPtr = Rp_PoolAllocItem(tablePtr->hPool, size); |
---|
802 | } else { |
---|
803 | hPtr = Rp_Malloc(size); |
---|
804 | } |
---|
805 | bucketPtr = tablePtr->buckets + hindex; |
---|
806 | hPtr->nextPtr = *bucketPtr; |
---|
807 | hPtr->hval = hval; |
---|
808 | hPtr->clientData = 0; |
---|
809 | count = tablePtr->keyType; |
---|
810 | for (iPtr1 = (uint32_t *)key, iPtr2 = (uint32_t *)hPtr->key.words; |
---|
811 | count > 0; count--, iPtr1++, iPtr2++) { |
---|
812 | *iPtr2 = *iPtr1; |
---|
813 | } |
---|
814 | *bucketPtr = hPtr; |
---|
815 | tablePtr->numEntries++; |
---|
816 | |
---|
817 | /* |
---|
818 | * If the table has exceeded a decent size, rebuild it with many |
---|
819 | * more buckets. |
---|
820 | */ |
---|
821 | if (tablePtr->numEntries >= tablePtr->rebuildSize) { |
---|
822 | RebuildTable(tablePtr); |
---|
823 | } |
---|
824 | return hPtr; |
---|
825 | } |
---|
826 | |
---|
827 | /* |
---|
828 | *---------------------------------------------------------------------- |
---|
829 | * |
---|
830 | * BogusFind -- |
---|
831 | * |
---|
832 | * This procedure is invoked when an Rp_FindHashEntry is called |
---|
833 | * on a table that has been deleted. |
---|
834 | * |
---|
835 | * Results: |
---|
836 | * If panic returns (which it shouldn't) this procedure returns |
---|
837 | * NULL. |
---|
838 | * |
---|
839 | * Side effects: |
---|
840 | * Generates a panic. |
---|
841 | * |
---|
842 | *---------------------------------------------------------------------- |
---|
843 | */ |
---|
844 | /* ARGSUSED */ |
---|
845 | static Rp_HashEntry * |
---|
846 | BogusFind( |
---|
847 | Rp_HashTable *tablePtr, /* Table in which to lookup entry. */ |
---|
848 | CONST void *key) /* Key to use to find matching entry. */ |
---|
849 | { |
---|
850 | Rp_Panic("called Rp_FindHashEntry on deleted table"); |
---|
851 | return NULL; |
---|
852 | } |
---|
853 | |
---|
854 | /* |
---|
855 | *---------------------------------------------------------------------- |
---|
856 | * |
---|
857 | * BogusCreate -- |
---|
858 | * |
---|
859 | * This procedure is invoked when an Rp_CreateHashEntry is called |
---|
860 | * on a table that has been deleted. |
---|
861 | * |
---|
862 | * Results: |
---|
863 | * If panic returns (which it shouldn't) this procedure returns |
---|
864 | * NULL. |
---|
865 | * |
---|
866 | * Side effects: |
---|
867 | * Generates a panic. |
---|
868 | * |
---|
869 | *---------------------------------------------------------------------- |
---|
870 | */ |
---|
871 | /* ARGSUSED */ |
---|
872 | static Rp_HashEntry * |
---|
873 | BogusCreate( |
---|
874 | Rp_HashTable *tablePtr, /* Table in which to lookup entry. */ |
---|
875 | CONST void *key, /* Key to use to find or create matching |
---|
876 | * entry. */ |
---|
877 | int *newPtr) /* Store info here telling whether a new |
---|
878 | * entry was created. */ |
---|
879 | { |
---|
880 | Rp_Panic("called Rp_CreateHashEntry on deleted table"); |
---|
881 | return NULL; |
---|
882 | } |
---|
883 | |
---|
884 | /* |
---|
885 | *---------------------------------------------------------------------- |
---|
886 | * |
---|
887 | * RebuildTable -- |
---|
888 | * |
---|
889 | * This procedure is invoked when the ratio of entries to hash |
---|
890 | * buckets becomes too large. It creates a new table with a |
---|
891 | * larger bucket array and moves all of the entries into the |
---|
892 | * new table. |
---|
893 | * |
---|
894 | * Results: |
---|
895 | * None. |
---|
896 | * |
---|
897 | * Side effects: |
---|
898 | * Memory gets reallocated and entries get re-hashed to new |
---|
899 | * buckets. |
---|
900 | * |
---|
901 | *---------------------------------------------------------------------- |
---|
902 | */ |
---|
903 | static void |
---|
904 | RebuildTable(Rp_HashTable *tablePtr) /* Table to enlarge. */ |
---|
905 | { |
---|
906 | Rp_HashEntry **bucketPtr, **oldBuckets; |
---|
907 | register Rp_HashEntry **oldChainPtr, **endPtr; |
---|
908 | register Rp_HashEntry *hPtr, *nextPtr; |
---|
909 | size_t hindex; |
---|
910 | |
---|
911 | oldBuckets = tablePtr->buckets; |
---|
912 | endPtr = tablePtr->buckets + tablePtr->numBuckets; |
---|
913 | /* |
---|
914 | * Allocate and initialize the new bucket array, and set up |
---|
915 | * hashing constants for new array size. |
---|
916 | */ |
---|
917 | tablePtr->numBuckets <<= 2; |
---|
918 | tablePtr->buckets = Rp_Calloc(tablePtr->numBuckets, |
---|
919 | sizeof(Rp_HashEntry *)); |
---|
920 | tablePtr->rebuildSize <<= 2; |
---|
921 | tablePtr->downShift -= 2; |
---|
922 | tablePtr->mask = tablePtr->numBuckets - 1; |
---|
923 | |
---|
924 | /* |
---|
925 | * Move all of the existing entries into the new bucket array, |
---|
926 | * based on their hash values. |
---|
927 | */ |
---|
928 | if (tablePtr->keyType == RP_ONE_WORD_KEYS) { |
---|
929 | /* |
---|
930 | * RP_ONE_WORD_KEYS are handled slightly differently because |
---|
931 | * they use the current table size (number of buckets) to be |
---|
932 | * distributed. |
---|
933 | */ |
---|
934 | for (oldChainPtr = oldBuckets; oldChainPtr < endPtr; oldChainPtr++) { |
---|
935 | for (hPtr = *oldChainPtr; hPtr != NULL; hPtr = nextPtr) { |
---|
936 | nextPtr = hPtr->nextPtr; |
---|
937 | hindex = RANDOM_INDEX(tablePtr, hPtr->key.oneWordValue); |
---|
938 | bucketPtr = tablePtr->buckets + hindex; |
---|
939 | hPtr->nextPtr = *bucketPtr; |
---|
940 | *bucketPtr = hPtr; |
---|
941 | } |
---|
942 | } |
---|
943 | } else { |
---|
944 | for (oldChainPtr = oldBuckets; oldChainPtr < endPtr; oldChainPtr++) { |
---|
945 | for (hPtr = *oldChainPtr; hPtr != NULL; hPtr = nextPtr) { |
---|
946 | nextPtr = hPtr->nextPtr; |
---|
947 | hindex = hPtr->hval & tablePtr->mask; |
---|
948 | bucketPtr = tablePtr->buckets + hindex; |
---|
949 | hPtr->nextPtr = *bucketPtr; |
---|
950 | *bucketPtr = hPtr; |
---|
951 | } |
---|
952 | } |
---|
953 | } |
---|
954 | |
---|
955 | /* |
---|
956 | * Free up the old bucket array, if it was dynamically allocated. |
---|
957 | */ |
---|
958 | if (oldBuckets != tablePtr->staticBuckets) { |
---|
959 | Rp_Free(oldBuckets); |
---|
960 | } |
---|
961 | } |
---|
962 | |
---|
963 | |
---|
964 | /* Public hash table routines */ |
---|
965 | |
---|
966 | /* |
---|
967 | *---------------------------------------------------------------------- |
---|
968 | * |
---|
969 | * Rp_InitHashTable -- |
---|
970 | * |
---|
971 | * Given storage for a hash table, set up the fields to prepare |
---|
972 | * the hash table for use. |
---|
973 | * |
---|
974 | * Results: |
---|
975 | * None. |
---|
976 | * |
---|
977 | * Side effects: |
---|
978 | * TablePtr is now ready to be passed to Rp_FindHashEntry and |
---|
979 | * Rp_CreateHashEntry. |
---|
980 | * |
---|
981 | *---------------------------------------------------------------------- |
---|
982 | */ |
---|
983 | void |
---|
984 | Rp_InitHashTable( |
---|
985 | register Rp_HashTable *tablePtr, /* Pointer to table record, which |
---|
986 | * is supplied by the caller. */ |
---|
987 | size_t keyType) /* Type of keys to use in table. */ |
---|
988 | { |
---|
989 | #if (RP_SMALL_HASH_TABLE != 4) |
---|
990 | Rp_Panic("Rp_InitHashTable: RP_SMALL_HASH_TABLE is %d, not 4\n", |
---|
991 | RP_SMALL_HASH_TABLE); |
---|
992 | #endif |
---|
993 | tablePtr->buckets = tablePtr->staticBuckets; |
---|
994 | tablePtr->numBuckets = RP_SMALL_HASH_TABLE; |
---|
995 | tablePtr->staticBuckets[0] = tablePtr->staticBuckets[1] = 0; |
---|
996 | tablePtr->staticBuckets[2] = tablePtr->staticBuckets[3] = 0; |
---|
997 | tablePtr->numEntries = 0; |
---|
998 | tablePtr->rebuildSize = RP_SMALL_HASH_TABLE * REBUILD_MULTIPLIER; |
---|
999 | tablePtr->downShift = DOWNSHIFT_START; |
---|
1000 | |
---|
1001 | /* The number of buckets is always a power of 2, so we can |
---|
1002 | * generate the mask by simply subtracting 1 from the number of |
---|
1003 | * buckets. */ |
---|
1004 | tablePtr->mask = (Rp_Hash)(tablePtr->numBuckets - 1); |
---|
1005 | tablePtr->keyType = keyType; |
---|
1006 | |
---|
1007 | switch (keyType) { |
---|
1008 | case RP_STRING_KEYS: /* NUL terminated string keys. */ |
---|
1009 | tablePtr->findProc = StringFind; |
---|
1010 | tablePtr->createProc = StringCreate; |
---|
1011 | break; |
---|
1012 | |
---|
1013 | case RP_ONE_WORD_KEYS: /* 32 or 64 bit atomic keys. */ |
---|
1014 | tablePtr->findProc = OneWordFind; |
---|
1015 | tablePtr->createProc = OneWordCreate; |
---|
1016 | break; |
---|
1017 | |
---|
1018 | default: /* Structures/arrays. */ |
---|
1019 | if (keyType == 0) { |
---|
1020 | Rp_Panic("Rp_InitHashTable: Key size can't be %d, must be > 0\n", |
---|
1021 | keyType); |
---|
1022 | } |
---|
1023 | tablePtr->findProc = ArrayFind; |
---|
1024 | tablePtr->createProc = ArrayCreate; |
---|
1025 | break; |
---|
1026 | } |
---|
1027 | tablePtr->hPool = NULL; |
---|
1028 | } |
---|
1029 | |
---|
1030 | /* |
---|
1031 | *---------------------------------------------------------------------- |
---|
1032 | * |
---|
1033 | * Rp_InitHashTableWithPool -- |
---|
1034 | * |
---|
1035 | * Given storage for a hash table, set up the fields to prepare |
---|
1036 | * the hash table for use. The only difference between this |
---|
1037 | * routine and Rp_InitHashTable is that is uses a pool allocator |
---|
1038 | * to allocate memory for hash table entries. The type of pool |
---|
1039 | * is either fixed or variable size (string) keys. |
---|
1040 | * |
---|
1041 | * Results: |
---|
1042 | * None. |
---|
1043 | * |
---|
1044 | * Side effects: |
---|
1045 | * TablePtr is now ready to be passed to Rp_FindHashEntry and |
---|
1046 | * Rp_CreateHashEntry. |
---|
1047 | * |
---|
1048 | *---------------------------------------------------------------------- |
---|
1049 | */ |
---|
1050 | void |
---|
1051 | Rp_InitHashTableWithPool( |
---|
1052 | register Rp_HashTable *tablePtr, /* Pointer to table record, which |
---|
1053 | * is supplied by the caller. */ |
---|
1054 | size_t keyType) /* Type of keys to use in table. */ |
---|
1055 | { |
---|
1056 | Rp_InitHashTable(tablePtr, keyType); |
---|
1057 | if (keyType == RP_STRING_KEYS) { |
---|
1058 | tablePtr->hPool = Rp_PoolCreate(RP_VARIABLE_SIZE_ITEMS); |
---|
1059 | } else { |
---|
1060 | tablePtr->hPool = Rp_PoolCreate(RP_FIXED_SIZE_ITEMS); |
---|
1061 | } |
---|
1062 | } |
---|
1063 | |
---|
1064 | /* |
---|
1065 | *---------------------------------------------------------------------- |
---|
1066 | * |
---|
1067 | * Rp_DeleteHashEntry -- |
---|
1068 | * |
---|
1069 | * Remove a single entry from a hash table. |
---|
1070 | * |
---|
1071 | * Results: |
---|
1072 | * None. |
---|
1073 | * |
---|
1074 | * Side effects: |
---|
1075 | * The entry given by entryPtr is deleted from its table and |
---|
1076 | * should never again be used by the caller. It is up to the |
---|
1077 | * caller to free the clientData field of the entry, if that |
---|
1078 | * is relevant. |
---|
1079 | * |
---|
1080 | *---------------------------------------------------------------------- |
---|
1081 | */ |
---|
1082 | void |
---|
1083 | Rp_DeleteHashEntry( |
---|
1084 | Rp_HashTable *tablePtr, |
---|
1085 | Rp_HashEntry *entryPtr) |
---|
1086 | { |
---|
1087 | register Rp_HashEntry *prevPtr; |
---|
1088 | Rp_HashEntry **bucketPtr; |
---|
1089 | size_t hindex; |
---|
1090 | |
---|
1091 | if (tablePtr->keyType == RP_ONE_WORD_KEYS) { |
---|
1092 | hindex = RANDOM_INDEX(tablePtr, (CONST void *)entryPtr->hval); |
---|
1093 | } else { |
---|
1094 | hindex = (entryPtr->hval & tablePtr->mask); |
---|
1095 | } |
---|
1096 | bucketPtr = tablePtr->buckets + hindex; |
---|
1097 | if (*bucketPtr == entryPtr) { |
---|
1098 | *bucketPtr = entryPtr->nextPtr; |
---|
1099 | } else { |
---|
1100 | for (prevPtr = *bucketPtr; /*empty*/; prevPtr = prevPtr->nextPtr) { |
---|
1101 | if (prevPtr == NULL) { |
---|
1102 | Rp_Panic("malformed bucket chain in Rp_DeleteHashEntry"); |
---|
1103 | } |
---|
1104 | if (prevPtr->nextPtr == entryPtr) { |
---|
1105 | prevPtr->nextPtr = entryPtr->nextPtr; |
---|
1106 | break; |
---|
1107 | } |
---|
1108 | } |
---|
1109 | } |
---|
1110 | tablePtr->numEntries--; |
---|
1111 | if (tablePtr->hPool != NULL) { |
---|
1112 | Rp_PoolFreeItem(tablePtr->hPool, (char *)entryPtr); |
---|
1113 | } else { |
---|
1114 | Rp_Free(entryPtr); |
---|
1115 | } |
---|
1116 | } |
---|
1117 | |
---|
1118 | /* |
---|
1119 | *---------------------------------------------------------------------- |
---|
1120 | * |
---|
1121 | * Rp_DeleteHashTable -- |
---|
1122 | * |
---|
1123 | * Free up everything associated with a hash table except for |
---|
1124 | * the record for the table itself. |
---|
1125 | * |
---|
1126 | * Results: |
---|
1127 | * None. |
---|
1128 | * |
---|
1129 | * Side effects: |
---|
1130 | * The hash table is no longer useable. |
---|
1131 | * |
---|
1132 | *---------------------------------------------------------------------- |
---|
1133 | */ |
---|
1134 | void |
---|
1135 | Rp_DeleteHashTable(Rp_HashTable *tablePtr) /* Table to delete. */ |
---|
1136 | { |
---|
1137 | /* |
---|
1138 | * Free up all the entries in the table. |
---|
1139 | */ |
---|
1140 | if (tablePtr->hPool != NULL) { |
---|
1141 | Rp_PoolDestroy(tablePtr->hPool); |
---|
1142 | tablePtr->hPool = NULL; |
---|
1143 | } else { |
---|
1144 | register Rp_HashEntry *hPtr, *nextPtr; |
---|
1145 | size_t i; |
---|
1146 | |
---|
1147 | for (i = 0; i < tablePtr->numBuckets; i++) { |
---|
1148 | hPtr = tablePtr->buckets[i]; |
---|
1149 | while (hPtr != NULL) { |
---|
1150 | nextPtr = hPtr->nextPtr; |
---|
1151 | Rp_Free(hPtr); |
---|
1152 | hPtr = nextPtr; |
---|
1153 | } |
---|
1154 | } |
---|
1155 | } |
---|
1156 | |
---|
1157 | /* |
---|
1158 | * Free up the bucket array, if it was dynamically allocated. |
---|
1159 | */ |
---|
1160 | if (tablePtr->buckets != tablePtr->staticBuckets) { |
---|
1161 | Rp_Free(tablePtr->buckets); |
---|
1162 | } |
---|
1163 | |
---|
1164 | /* |
---|
1165 | * Arrange for panics if the table is used again without |
---|
1166 | * re-initialization. |
---|
1167 | */ |
---|
1168 | |
---|
1169 | tablePtr->findProc = BogusFind; |
---|
1170 | tablePtr->createProc = BogusCreate; |
---|
1171 | } |
---|
1172 | |
---|
1173 | /* |
---|
1174 | *---------------------------------------------------------------------- |
---|
1175 | * |
---|
1176 | * Rp_FirstHashEntry -- |
---|
1177 | * |
---|
1178 | * Locate the first entry in a hash table and set up a record |
---|
1179 | * that can be used to step through all the remaining entries |
---|
1180 | * of the table. |
---|
1181 | * |
---|
1182 | * Results: |
---|
1183 | * The return value is a pointer to the first entry in tablePtr, |
---|
1184 | * or NULL if tablePtr has no entries in it. The memory at |
---|
1185 | * *searchPtr is initialized so that subsequent calls to |
---|
1186 | * Rp_NextHashEntry will return all of the entries in the table, |
---|
1187 | * one at a time. |
---|
1188 | * |
---|
1189 | * Side effects: |
---|
1190 | * None. |
---|
1191 | * |
---|
1192 | *---------------------------------------------------------------------- |
---|
1193 | */ |
---|
1194 | Rp_HashEntry * |
---|
1195 | Rp_FirstHashEntry( |
---|
1196 | Rp_HashTable *tablePtr, /* Table to search. */ |
---|
1197 | Rp_HashSearch *searchPtr) /* Place to store information about |
---|
1198 | * progress through the table. */ |
---|
1199 | { |
---|
1200 | searchPtr->tablePtr = tablePtr; |
---|
1201 | searchPtr->nextIndex = 0; |
---|
1202 | searchPtr->nextEntryPtr = NULL; |
---|
1203 | return Rp_NextHashEntry(searchPtr); |
---|
1204 | } |
---|
1205 | |
---|
1206 | /* |
---|
1207 | *---------------------------------------------------------------------- |
---|
1208 | * |
---|
1209 | * Rp_NextHashEntry -- |
---|
1210 | * |
---|
1211 | * Once a hash table enumeration has been initiated by calling |
---|
1212 | * Rp_FirstHashEntry, this procedure may be called to return |
---|
1213 | * successive elements of the table. |
---|
1214 | * |
---|
1215 | * Results: |
---|
1216 | * The return value is the next entry in the hash table being |
---|
1217 | * enumerated, or NULL if the end of the table is reached. |
---|
1218 | * |
---|
1219 | * Side effects: |
---|
1220 | * None. |
---|
1221 | * |
---|
1222 | *---------------------------------------------------------------------- |
---|
1223 | */ |
---|
1224 | Rp_HashEntry * |
---|
1225 | Rp_NextHashEntry(Rp_HashSearch *searchPtr) |
---|
1226 | { |
---|
1227 | Rp_HashEntry *hPtr; |
---|
1228 | |
---|
1229 | while (searchPtr->nextEntryPtr == NULL) { |
---|
1230 | if (searchPtr->nextIndex >= searchPtr->tablePtr->numBuckets) { |
---|
1231 | return NULL; |
---|
1232 | } |
---|
1233 | searchPtr->nextEntryPtr = |
---|
1234 | searchPtr->tablePtr->buckets[searchPtr->nextIndex]; |
---|
1235 | searchPtr->nextIndex++; |
---|
1236 | } |
---|
1237 | hPtr = searchPtr->nextEntryPtr; |
---|
1238 | searchPtr->nextEntryPtr = hPtr->nextPtr; |
---|
1239 | return hPtr; |
---|
1240 | } |
---|
1241 | |
---|
1242 | /* |
---|
1243 | *---------------------------------------------------------------------- |
---|
1244 | * |
---|
1245 | * Rp_HashStats -- |
---|
1246 | * |
---|
1247 | * Return statistics describing the layout of the hash table |
---|
1248 | * in its hash buckets. |
---|
1249 | * |
---|
1250 | * Results: |
---|
1251 | * The return value is a malloc-ed string containing information |
---|
1252 | * about tablePtr. It is the caller's responsibility to free |
---|
1253 | * this string. |
---|
1254 | * |
---|
1255 | * Side effects: |
---|
1256 | * None. |
---|
1257 | * |
---|
1258 | *---------------------------------------------------------------------- |
---|
1259 | */ |
---|
1260 | char * |
---|
1261 | Rp_HashStats(Rp_HashTable *tablePtr) /* Table for which to produce stats. */ |
---|
1262 | { |
---|
1263 | #define NUM_COUNTERS 10 |
---|
1264 | size_t count[NUM_COUNTERS], overflow, i, j, max; |
---|
1265 | double average, tmp; |
---|
1266 | register Rp_HashEntry *hPtr; |
---|
1267 | Rp_HashEntry **bucketPtr, **endPtr; |
---|
1268 | char *result, *p; |
---|
1269 | |
---|
1270 | /* |
---|
1271 | * Compute a histogram of bucket usage. |
---|
1272 | */ |
---|
1273 | for (i = 0; i < NUM_COUNTERS; i++) { |
---|
1274 | count[i] = 0; |
---|
1275 | } |
---|
1276 | overflow = 0; |
---|
1277 | average = 0.0; |
---|
1278 | max = 0; |
---|
1279 | endPtr = tablePtr->buckets + tablePtr->numBuckets; |
---|
1280 | for (bucketPtr = tablePtr->buckets; bucketPtr < endPtr; bucketPtr++) { |
---|
1281 | j = 0; |
---|
1282 | for (hPtr = *bucketPtr; hPtr != NULL; hPtr = hPtr->nextPtr) { |
---|
1283 | j++; |
---|
1284 | } |
---|
1285 | if (j > max) { |
---|
1286 | max = j; |
---|
1287 | } |
---|
1288 | if (j < NUM_COUNTERS) { |
---|
1289 | count[j]++; |
---|
1290 | } else { |
---|
1291 | overflow++; |
---|
1292 | } |
---|
1293 | tmp = j; |
---|
1294 | average += (tmp+1.0)*(tmp/tablePtr->numEntries)/2.0; |
---|
1295 | } |
---|
1296 | |
---|
1297 | /* |
---|
1298 | * Print out the histogram and a few other pieces of information. |
---|
1299 | */ |
---|
1300 | result = Rp_Malloc((unsigned) ((NUM_COUNTERS*60) + 300)); |
---|
1301 | #if SIZEOF_VOID_P == 8 |
---|
1302 | sprintf(result, "%ld entries in table, %ld buckets\n", |
---|
1303 | tablePtr->numEntries, tablePtr->numBuckets); |
---|
1304 | #else |
---|
1305 | sprintf(result, "%d entries in table, %d buckets\n", |
---|
1306 | tablePtr->numEntries, tablePtr->numBuckets); |
---|
1307 | #endif |
---|
1308 | p = result + strlen(result); |
---|
1309 | for (i = 0; i < NUM_COUNTERS; i++) { |
---|
1310 | #if SIZEOF_VOID_P == 8 |
---|
1311 | sprintf(p, "number of buckets with %ld entries: %ld\n", |
---|
1312 | i, count[i]); |
---|
1313 | #else |
---|
1314 | sprintf(p, "number of buckets with %d entries: %d\n", |
---|
1315 | i, count[i]); |
---|
1316 | #endif |
---|
1317 | p += strlen(p); |
---|
1318 | } |
---|
1319 | #if SIZEOF_VOID_P == 8 |
---|
1320 | sprintf(p, "number of buckets with %d or more entries: %ld\n", |
---|
1321 | NUM_COUNTERS, overflow); |
---|
1322 | #else |
---|
1323 | sprintf(p, "number of buckets with %d or more entries: %d\n", |
---|
1324 | NUM_COUNTERS, overflow); |
---|
1325 | #endif |
---|
1326 | p += strlen(p); |
---|
1327 | sprintf(p, "average search distance for entry: %.2f\n", average); |
---|
1328 | p += strlen(p); |
---|
1329 | #if SIZEOF_VOID_P == 8 |
---|
1330 | sprintf(p, "maximum search distance for entry: %ld", max); |
---|
1331 | #else |
---|
1332 | sprintf(p, "maximum search distance for entry: %d", max); |
---|
1333 | #endif |
---|
1334 | return result; |
---|
1335 | } |
---|