/* -*- mode: c++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ /* * Copyright (c) 2004-2013 HUBzero Foundation, LLC * */ #include #include #include #include #include #include #include "Trace.h" #include "GradientFilter.h" using namespace nv; #ifndef SQR #define SQR(a) ((a) * (a)) #endif static int g_numOfSlices[3] = { 256, 256, 256 }; static void *g_volData = NULL; static float g_sliceDists[3]; #define SOBEL 1 #define GRAD_FILTER_SIZE 5 #define SIGMA2 5.0 #define MAX(a,b) ((a) > (b) ? (a) : (b)) #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define EPS 1e-6f #ifdef notused static char * getFloatGradientsFilename() { char floatExt[] = "_float"; char *filename; char extension[] = ".grd"; if (! (filename = (char *)malloc(strlen("base") + strlen(floatExt) + strlen(extension) + 1))) { ERROR("not enough memory for filename"); exit(1); } strcpy(filename, "base"); strcat(filename, floatExt); strcat(filename, extension); return filename; } static void saveFloatGradients(float *gradients, int *sizes) { char *filename; FILE *fp; filename = getFloatGradientsFilename(); if (! (fp = fopen(filename, "wb"))) { perror("cannot open gradients file for writing"); exit(1); } if (fwrite(gradients, 3 * sizes[0] * sizes[1] * sizes[2] * sizeof(float), 1, fp) != 1) { ERROR("writing float gradients failed"); exit(1); } fclose(fp); } static void saveGradients(void *gradients, int *sizes, DataType dataType) { char *filename; int size; FILE *fp; filename = getGradientsFilename(); if (! (fp = fopen(filename, "wb"))) { perror("cannot open gradients file for writing"); exit(1); } size = 3 * sizes[0] * sizes[1] * sizes[2] * getDataTypeSize(dataType); if (fwrite(gradients, size, 1, fp) != 1) { ERROR("writing gradients failed"); exit(1); } fclose(fp); } #endif static unsigned char getVoxel8(int x, int y, int z) { return ((unsigned char*)g_volData)[z * g_numOfSlices[0] * g_numOfSlices[1] + y * g_numOfSlices[0] + x]; } static unsigned short getVoxel16(int x, int y, int z) { return ((unsigned short*)g_volData)[z * g_numOfSlices[0] * g_numOfSlices[1] + y * g_numOfSlices[0] + x]; } static float getVoxelFloat(int x, int y, int z) { return ((float*)g_volData)[z * g_numOfSlices[0] * g_numOfSlices[1] + y * g_numOfSlices[0] + x]; } static float getVoxel(int x, int y, int z, nv::DataType dataType) { switch (dataType) { case nv::DATRAW_UCHAR: return (float)getVoxel8(x, y, z); break; case nv::DATRAW_USHORT: return (float)getVoxel16(x, y, z); break; case nv::DATRAW_FLOAT: return (float)getVoxelFloat(x, y, z); break; default: ERROR("Unsupported data type"); exit(1); } return 0.0; } void nv::computeGradients(float *gradients, void *volData, int *sizes, float *spacing, DataType dataType) { g_volData = volData; g_numOfSlices[0] = sizes[0]; g_numOfSlices[1] = sizes[1]; g_numOfSlices[2] = sizes[2]; g_sliceDists[0] = spacing[0]; g_sliceDists[1] = spacing[1]; g_sliceDists[2] = spacing[2]; int i, j, k, dir, idz, idy, idx; float *gp; static int weights[][3][3][3] = { {{{-1, -3, -1}, {-3, -6, -3}, {-1, -3, -1}}, {{ 0, 0, 0}, { 0, 0, 0}, { 0, 0, 0}}, {{ 1, 3, 1}, { 3, 6, 3}, { 1, 3, 1}}}, {{{-1, -3, -1}, { 0, 0, 0}, { 1, 3, 1}}, {{-3, -6, -3}, { 0, 0, 0}, { 3, 6, 3}}, {{-1, -3, -1}, { 0, 0, 0}, { 1, 3, 1}}}, {{{-1, 0, 1}, {-3, 0, 3}, {-1, 0, 1}}, {{-3, 0, 3}, {-6, 0, 6}, {-3, 0, 3}}, {{-1, 0, 1}, {-3, 0, 3}, {-1, 0, 1}}} }; TRACE("computing gradients ... may take a while"); gp = gradients; for (idz = 0; idz < sizes[2]; idz++) { for (idy = 0; idy < sizes[1]; idy++) { for (idx = 0; idx < sizes[0]; idx++) { #if SOBEL == 1 if (idx > 0 && idx < sizes[0] - 1 && idy > 0 && idy < sizes[1] - 1 && idz > 0 && idz < sizes[2] - 1) { for (dir = 0; dir < 3; dir++) { gp[dir] = 0.0; for (i = -1; i < 2; i++) { for (j = -1; j < 2; j++) { for (k = -1; k < 2; k++) { gp[dir] += weights[dir][i + 1] [j + 1] [k + 1] * getVoxel(idx + i, idy + j, idz + k, dataType); } } } gp[dir] /= 2.0 * g_sliceDists[dir]; } } else { /* X-direction */ if (idx < 1) { gp[0] = (getVoxel(idx + 1, idy, idz, dataType) - getVoxel(idx, idy, idz, dataType))/ (g_sliceDists[0]); } else { gp[0] = (getVoxel(idx, idy, idz, dataType) - getVoxel(idx - 1, idy, idz, dataType))/ (g_sliceDists[0]); } /* Y-direction */ if (idy < 1) { gp[1] = (getVoxel(idx, idy + 1, idz, dataType) - getVoxel(idx, idy, idz, dataType))/ (g_sliceDists[1]); } else { gp[1] = (getVoxel(idx, idy, idz, dataType) - getVoxel(idx, idy - 1, idz, dataType))/ (g_sliceDists[1]); } /* Z-direction */ if (idz < 1) { gp[2] = (getVoxel(idx, idy, idz + 1, dataType) - getVoxel(idx, idy, idz, dataType))/ (g_sliceDists[2]); } else { gp[2] = (getVoxel(idx, idy, idz, dataType) - getVoxel(idx, idy, idz - 1, dataType))/ (g_sliceDists[2]); } } #else /* X-direction */ if (idx < 1) { gp[0] = (getVoxel(idx + 1, idy, idz, dataType) - getVoxel(idx, idy, idz, dataType))/ (g_sliceDists[0]); } else if (idx > g_numOfSlices[0] - 1) { gp[0] = (getVoxel(idx, idy, idz, dataType) - getVoxel(idx - 1, idy, idz, dataType))/ (g_sliceDists[0]); } else { gp[0] = (getVoxel(idx + 1, idy, idz, dataType) - getVoxel(idx - 1, idy, idz, dataType))/ (2.0 * g_sliceDists[0]); } /* Y-direction */ if (idy < 1) { gp[1] = (getVoxel(idx, idy + 1, idz, dataType) - getVoxel(idx, idy, idz, dataType))/ (g_sliceDists[1]); } else if (idy > g_numOfSlices[1] - 1) { gp[1] = (getVoxel(idx, idy, idz, dataType) - getVoxel(idx, idy - 1, idz, dataType))/ (g_sliceDists[1]); } else { gp[1] = (getVoxel(idx, idy + 1, idz, dataType) - getVoxel(idx, idy - 1, idz, dataType))/ (2.0 * g_sliceDists[1]); } /* Z-direction */ if (idz < 1) { gp[2] = (getVoxel(idx, idy, idz + 1, dataType) - getVoxel(idx, idy, idz, dataType))/ (g_sliceDists[2]); } else if (idz > g_numOfSlices[2] - 1) { gp[2] = (getVoxel(idx, idy, idz, dataType) - getVoxel(idx, idy, idz - 1, dataType))/ (g_sliceDists[2]); } else { gp[2] = (getVoxel(idx, idy, idz + 1, dataType) - getVoxel(idx, idy, idz - 1, dataType))/ (2.0 * g_sliceDists[2]); } #endif gp += 3; } } } } void nv::filterGradients(float *gradients, int *sizes) { int i, j, k, idz, idy, idx, gi, ogi, filterWidth, n, borderDist[3]; float sum, *filteredGradients, ****filter; TRACE("filtering gradients ... may also take a while"); if (! (filteredGradients = (float *)malloc(sizes[0] * sizes[1] * sizes[2] * 3 * sizeof(float)))) { ERROR("not enough memory for filtered gradients"); exit(1); } /* Allocate storage for filter kernels */ if (! (filter = (float ****)malloc((GRAD_FILTER_SIZE/2 + 1) * sizeof(float ***)))) { ERROR("failed to allocate gradient filter"); exit(1); } for (i = 0; i < GRAD_FILTER_SIZE/2 + 1; i++) { if (! (filter[i] = (float ***)malloc((GRAD_FILTER_SIZE) * sizeof(float **)))) { ERROR("failed to allocate gradient filter"); exit(1); } } for (i = 0; i < GRAD_FILTER_SIZE/2 + 1; i++) { for (j = 0; j < GRAD_FILTER_SIZE; j++) { if (! (filter[i][j] = (float **)malloc((GRAD_FILTER_SIZE) * sizeof(float *)))) { ERROR("failed to allocate gradient filter"); exit(1); } } } for (i = 0; i < GRAD_FILTER_SIZE/2 + 1; i++) { for (j = 0; j < GRAD_FILTER_SIZE; j++) { for (k = 0; k < GRAD_FILTER_SIZE; k++) { if (! (filter[i][j][k] = (float *)malloc((GRAD_FILTER_SIZE) * sizeof(float)))) { ERROR("failed to allocate gradient filter"); exit(1); } } } } filterWidth = GRAD_FILTER_SIZE/2; /* Compute the filter kernels */ for (n = 0; n <= filterWidth; n++) { sum = 0.0f; for (k = -filterWidth; k <= filterWidth; k++) { for (j = -filterWidth; j <= filterWidth; j++) { for (i = -filterWidth; i <= filterWidth; i++) { sum += (filter[n][filterWidth + k] [filterWidth + j] [filterWidth + i] = exp(-(SQR(i) + SQR(j) + SQR(k)) / SIGMA2)); } } } for (k = -filterWidth; k <= filterWidth; k++) { for (j = -filterWidth; j <= filterWidth; j++) { for (i = -filterWidth; i <= filterWidth; i++) { filter[n][filterWidth + k] [filterWidth + j] [filterWidth + i] /= sum; } } } } gi = 0; /* Filter the gradients */ for (idz = 0; idz < sizes[2]; idz++) { for (idy = 0; idy < sizes[1]; idy++) { for (idx = 0; idx < sizes[0]; idx++) { borderDist[0] = MIN(idx, sizes[0] - idx - 1); borderDist[1] = MIN(idy, sizes[1] - idy - 1); borderDist[2] = MIN(idz, sizes[2] - idz - 1); filterWidth = MIN(GRAD_FILTER_SIZE/2, MIN(MIN(borderDist[0], borderDist[1]), borderDist[2])); for (n = 0; n < 3; n++) { filteredGradients[gi] = 0.0; for (k = -filterWidth; k <= filterWidth; k++) { for (j = -filterWidth; j <= filterWidth; j++) { for (i = -filterWidth; i <= filterWidth; i++) { ogi = (((idz + k) * sizes[1] + (idy + j)) * sizes[0] + (idx + i)) * 3 + n; filteredGradients[gi] += filter[filterWidth] [filterWidth + k] [filterWidth + j] [filterWidth + i] * gradients[ogi]; } } } gi++; } } } } /* Replace the orignal gradients by the filtered gradients */ memcpy(gradients, filteredGradients, sizes[0] * sizes[1] * sizes[2] * 3 * sizeof(float)); free(filteredGradients); /* free storage of filter kernel(s) */ for (i = 0; i < GRAD_FILTER_SIZE/2 + 1; i++) { for (j = 0; j < GRAD_FILTER_SIZE; j++) { for (k = 0; k < GRAD_FILTER_SIZE; k++) { free(filter[i][j][k]); } } } for (i = 0; i < GRAD_FILTER_SIZE/2 + 1; i++) { for (j = 0; j < GRAD_FILTER_SIZE; j++) { free(filter[i][j]); } } for (i = 0; i < GRAD_FILTER_SIZE/2 + 1; i++) { free(filter[i]); } free(filter); } static void quantize8(float *grad, unsigned char *data) { float len; int i; len = sqrt(SQR(grad[0]) + SQR(grad[1]) + SQR(grad[2])); if (len < EPS) { grad[0] = grad[1] = grad[2] = 0.0; } else { grad[0] /= len; grad[1] /= len; grad[2] /= len; } for (i = 0; i < 3; i++) { data[i] = (unsigned char)((grad[i] + 1.0)/2.0 * UCHAR_MAX); } } static void quantize16(float *grad, unsigned short *data) { float len; int i; len = sqrt(SQR(grad[0]) + SQR(grad[1]) + SQR(grad[2])); if (len < EPS) { grad[0] = grad[1] = grad[2] = 0.0; } else { grad[0] /= len; grad[1] /= len; grad[2] /= len; } for (i = 0; i < 3; i++) { data[i] = (unsigned short)((grad[i] + 1.0)/2.0 * USHRT_MAX); } } static void quantizeFloat(float *grad, float *data) { float len; int i; len = sqrt(SQR(grad[0]) + SQR(grad[1]) + SQR(grad[2])); if (len < EPS) { grad[0] = grad[1] = grad[2] = 0.0; } else { grad[0] /= len; grad[1] /= len; grad[2] /= len; } for (i = 0; i < 3; i++) { data[i] = (float)((grad[i] + 1.0)/2.0); } } void nv::quantizeGradients(float *gradientsIn, void *gradientsOut, int *sizes, DataType dataType) { int idx, idy, idz, di; di = 0; for (idz = 0; idz < sizes[2]; idz++) { for (idy = 0; idy < sizes[1]; idy++) { for (idx = 0; idx < sizes[0]; idx++) { switch (dataType) { case DATRAW_UCHAR: quantize8(&gradientsIn[di], &((unsigned char*)gradientsOut)[di]); break; case DATRAW_USHORT: quantize16(&gradientsIn[di], &((unsigned short*)gradientsOut)[di]); break; case DATRAW_FLOAT: quantizeFloat(&gradientsIn[di], &((float*)gradientsOut)[di]); break; default: ERROR("unsupported data type"); break; } di += 3; } } } }