1 | /* The PyObject_ memory family: high-level object memory interfaces. |
---|
2 | See pymem.h for the low-level PyMem_ family. |
---|
3 | */ |
---|
4 | |
---|
5 | #ifndef Py_OBJIMPL_H |
---|
6 | #define Py_OBJIMPL_H |
---|
7 | |
---|
8 | #include "pymem.h" |
---|
9 | |
---|
10 | #ifdef __cplusplus |
---|
11 | extern "C" { |
---|
12 | #endif |
---|
13 | |
---|
14 | /* BEWARE: |
---|
15 | |
---|
16 | Each interface exports both functions and macros. Extension modules should |
---|
17 | use the functions, to ensure binary compatibility across Python versions. |
---|
18 | Because the Python implementation is free to change internal details, and |
---|
19 | the macros may (or may not) expose details for speed, if you do use the |
---|
20 | macros you must recompile your extensions with each Python release. |
---|
21 | |
---|
22 | Never mix calls to PyObject_ memory functions with calls to the platform |
---|
23 | malloc/realloc/ calloc/free, or with calls to PyMem_. |
---|
24 | */ |
---|
25 | |
---|
26 | /* |
---|
27 | Functions and macros for modules that implement new object types. |
---|
28 | |
---|
29 | - PyObject_New(type, typeobj) allocates memory for a new object of the given |
---|
30 | type, and initializes part of it. 'type' must be the C structure type used |
---|
31 | to represent the object, and 'typeobj' the address of the corresponding |
---|
32 | type object. Reference count and type pointer are filled in; the rest of |
---|
33 | the bytes of the object are *undefined*! The resulting expression type is |
---|
34 | 'type *'. The size of the object is determined by the tp_basicsize field |
---|
35 | of the type object. |
---|
36 | |
---|
37 | - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size |
---|
38 | object with room for n items. In addition to the refcount and type pointer |
---|
39 | fields, this also fills in the ob_size field. |
---|
40 | |
---|
41 | - PyObject_Del(op) releases the memory allocated for an object. It does not |
---|
42 | run a destructor -- it only frees the memory. PyObject_Free is identical. |
---|
43 | |
---|
44 | - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't |
---|
45 | allocate memory. Instead of a 'type' parameter, they take a pointer to a |
---|
46 | new object (allocated by an arbitrary allocator), and initialize its object |
---|
47 | header fields. |
---|
48 | |
---|
49 | Note that objects created with PyObject_{New, NewVar} are allocated using the |
---|
50 | specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is |
---|
51 | enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG |
---|
52 | is also #defined. |
---|
53 | |
---|
54 | In case a specific form of memory management is needed (for example, if you |
---|
55 | must use the platform malloc heap(s), or shared memory, or C++ local storage or |
---|
56 | operator new), you must first allocate the object with your custom allocator, |
---|
57 | then pass its pointer to PyObject_{Init, InitVar} for filling in its Python- |
---|
58 | specific fields: reference count, type pointer, possibly others. You should |
---|
59 | be aware that Python no control over these objects because they don't |
---|
60 | cooperate with the Python memory manager. Such objects may not be eligible |
---|
61 | for automatic garbage collection and you have to make sure that they are |
---|
62 | released accordingly whenever their destructor gets called (cf. the specific |
---|
63 | form of memory management you're using). |
---|
64 | |
---|
65 | Unless you have specific memory management requirements, use |
---|
66 | PyObject_{New, NewVar, Del}. |
---|
67 | */ |
---|
68 | |
---|
69 | /* |
---|
70 | * Raw object memory interface |
---|
71 | * =========================== |
---|
72 | */ |
---|
73 | |
---|
74 | /* Functions to call the same malloc/realloc/free as used by Python's |
---|
75 | object allocator. If WITH_PYMALLOC is enabled, these may differ from |
---|
76 | the platform malloc/realloc/free. The Python object allocator is |
---|
77 | designed for fast, cache-conscious allocation of many "small" objects, |
---|
78 | and with low hidden memory overhead. |
---|
79 | |
---|
80 | PyObject_Malloc(0) returns a unique non-NULL pointer if possible. |
---|
81 | |
---|
82 | PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n). |
---|
83 | PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory |
---|
84 | at p. |
---|
85 | |
---|
86 | Returned pointers must be checked for NULL explicitly; no action is |
---|
87 | performed on failure other than to return NULL (no warning it printed, no |
---|
88 | exception is set, etc). |
---|
89 | |
---|
90 | For allocating objects, use PyObject_{New, NewVar} instead whenever |
---|
91 | possible. The PyObject_{Malloc, Realloc, Free} family is exposed |
---|
92 | so that you can exploit Python's small-block allocator for non-object |
---|
93 | uses. If you must use these routines to allocate object memory, make sure |
---|
94 | the object gets initialized via PyObject_{Init, InitVar} after obtaining |
---|
95 | the raw memory. |
---|
96 | */ |
---|
97 | PyAPI_FUNC(void *) PyObject_Malloc(size_t); |
---|
98 | PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t); |
---|
99 | PyAPI_FUNC(void) PyObject_Free(void *); |
---|
100 | |
---|
101 | |
---|
102 | /* Macros */ |
---|
103 | #ifdef WITH_PYMALLOC |
---|
104 | #ifdef PYMALLOC_DEBUG |
---|
105 | PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes); |
---|
106 | PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes); |
---|
107 | PyAPI_FUNC(void) _PyObject_DebugFree(void *p); |
---|
108 | PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p); |
---|
109 | PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p); |
---|
110 | PyAPI_FUNC(void) _PyObject_DebugMallocStats(void); |
---|
111 | #define PyObject_MALLOC _PyObject_DebugMalloc |
---|
112 | #define PyObject_Malloc _PyObject_DebugMalloc |
---|
113 | #define PyObject_REALLOC _PyObject_DebugRealloc |
---|
114 | #define PyObject_Realloc _PyObject_DebugRealloc |
---|
115 | #define PyObject_FREE _PyObject_DebugFree |
---|
116 | #define PyObject_Free _PyObject_DebugFree |
---|
117 | |
---|
118 | #else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */ |
---|
119 | #define PyObject_MALLOC PyObject_Malloc |
---|
120 | #define PyObject_REALLOC PyObject_Realloc |
---|
121 | #define PyObject_FREE PyObject_Free |
---|
122 | #endif |
---|
123 | |
---|
124 | #else /* ! WITH_PYMALLOC */ |
---|
125 | #define PyObject_MALLOC PyMem_MALLOC |
---|
126 | #define PyObject_REALLOC PyMem_REALLOC |
---|
127 | /* This is an odd one! For backward compatability with old extensions, the |
---|
128 | PyMem "release memory" functions have to invoke the object allocator's |
---|
129 | free() function. When pymalloc isn't enabled, that leaves us using |
---|
130 | the platform free(). */ |
---|
131 | #define PyObject_FREE free |
---|
132 | |
---|
133 | #endif /* WITH_PYMALLOC */ |
---|
134 | |
---|
135 | #define PyObject_Del PyObject_Free |
---|
136 | #define PyObject_DEL PyObject_FREE |
---|
137 | |
---|
138 | /* for source compatibility with 2.2 */ |
---|
139 | #define _PyObject_Del PyObject_Free |
---|
140 | |
---|
141 | /* |
---|
142 | * Generic object allocator interface |
---|
143 | * ================================== |
---|
144 | */ |
---|
145 | |
---|
146 | /* Functions */ |
---|
147 | PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *); |
---|
148 | PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *, |
---|
149 | PyTypeObject *, int); |
---|
150 | PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *); |
---|
151 | PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, int); |
---|
152 | |
---|
153 | #define PyObject_New(type, typeobj) \ |
---|
154 | ( (type *) _PyObject_New(typeobj) ) |
---|
155 | #define PyObject_NewVar(type, typeobj, n) \ |
---|
156 | ( (type *) _PyObject_NewVar((typeobj), (n)) ) |
---|
157 | |
---|
158 | /* Macros trading binary compatibility for speed. See also pymem.h. |
---|
159 | Note that these macros expect non-NULL object pointers.*/ |
---|
160 | #define PyObject_INIT(op, typeobj) \ |
---|
161 | ( (op)->ob_type = (typeobj), _Py_NewReference((PyObject *)(op)), (op) ) |
---|
162 | #define PyObject_INIT_VAR(op, typeobj, size) \ |
---|
163 | ( (op)->ob_size = (size), PyObject_INIT((op), (typeobj)) ) |
---|
164 | |
---|
165 | #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize ) |
---|
166 | |
---|
167 | /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a |
---|
168 | vrbl-size object with nitems items, exclusive of gc overhead (if any). The |
---|
169 | value is rounded up to the closest multiple of sizeof(void *), in order to |
---|
170 | ensure that pointer fields at the end of the object are correctly aligned |
---|
171 | for the platform (this is of special importance for subclasses of, e.g., |
---|
172 | str or long, so that pointers can be stored after the embedded data). |
---|
173 | |
---|
174 | Note that there's no memory wastage in doing this, as malloc has to |
---|
175 | return (at worst) pointer-aligned memory anyway. |
---|
176 | */ |
---|
177 | #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0 |
---|
178 | # error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2" |
---|
179 | #endif |
---|
180 | |
---|
181 | #define _PyObject_VAR_SIZE(typeobj, nitems) \ |
---|
182 | (size_t) \ |
---|
183 | ( ( (typeobj)->tp_basicsize + \ |
---|
184 | (nitems)*(typeobj)->tp_itemsize + \ |
---|
185 | (SIZEOF_VOID_P - 1) \ |
---|
186 | ) & ~(SIZEOF_VOID_P - 1) \ |
---|
187 | ) |
---|
188 | |
---|
189 | #define PyObject_NEW(type, typeobj) \ |
---|
190 | ( (type *) PyObject_Init( \ |
---|
191 | (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) ) |
---|
192 | |
---|
193 | #define PyObject_NEW_VAR(type, typeobj, n) \ |
---|
194 | ( (type *) PyObject_InitVar( \ |
---|
195 | (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\ |
---|
196 | (typeobj), (n)) ) |
---|
197 | |
---|
198 | /* This example code implements an object constructor with a custom |
---|
199 | allocator, where PyObject_New is inlined, and shows the important |
---|
200 | distinction between two steps (at least): |
---|
201 | 1) the actual allocation of the object storage; |
---|
202 | 2) the initialization of the Python specific fields |
---|
203 | in this storage with PyObject_{Init, InitVar}. |
---|
204 | |
---|
205 | PyObject * |
---|
206 | YourObject_New(...) |
---|
207 | { |
---|
208 | PyObject *op; |
---|
209 | |
---|
210 | op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct)); |
---|
211 | if (op == NULL) |
---|
212 | return PyErr_NoMemory(); |
---|
213 | |
---|
214 | PyObject_Init(op, &YourTypeStruct); |
---|
215 | |
---|
216 | op->ob_field = value; |
---|
217 | ... |
---|
218 | return op; |
---|
219 | } |
---|
220 | |
---|
221 | Note that in C++, the use of the new operator usually implies that |
---|
222 | the 1st step is performed automatically for you, so in a C++ class |
---|
223 | constructor you would start directly with PyObject_Init/InitVar |
---|
224 | */ |
---|
225 | |
---|
226 | /* |
---|
227 | * Garbage Collection Support |
---|
228 | * ========================== |
---|
229 | */ |
---|
230 | |
---|
231 | /* C equivalent of gc.collect(). */ |
---|
232 | long PyGC_Collect(void); |
---|
233 | |
---|
234 | /* Test if a type has a GC head */ |
---|
235 | #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC) |
---|
236 | |
---|
237 | /* Test if an object has a GC head */ |
---|
238 | #define PyObject_IS_GC(o) (PyType_IS_GC((o)->ob_type) && \ |
---|
239 | ((o)->ob_type->tp_is_gc == NULL || (o)->ob_type->tp_is_gc(o))) |
---|
240 | |
---|
241 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, int); |
---|
242 | #define PyObject_GC_Resize(type, op, n) \ |
---|
243 | ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) ) |
---|
244 | |
---|
245 | /* for source compatibility with 2.2 */ |
---|
246 | #define _PyObject_GC_Del PyObject_GC_Del |
---|
247 | |
---|
248 | /* GC information is stored BEFORE the object structure. */ |
---|
249 | typedef union _gc_head { |
---|
250 | struct { |
---|
251 | union _gc_head *gc_next; |
---|
252 | union _gc_head *gc_prev; |
---|
253 | int gc_refs; |
---|
254 | } gc; |
---|
255 | long double dummy; /* force worst-case alignment */ |
---|
256 | } PyGC_Head; |
---|
257 | |
---|
258 | extern PyGC_Head *_PyGC_generation0; |
---|
259 | |
---|
260 | #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1) |
---|
261 | |
---|
262 | #define _PyGC_REFS_UNTRACKED (-2) |
---|
263 | #define _PyGC_REFS_REACHABLE (-3) |
---|
264 | #define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4) |
---|
265 | |
---|
266 | /* Tell the GC to track this object. NB: While the object is tracked the |
---|
267 | * collector it must be safe to call the ob_traverse method. */ |
---|
268 | #define _PyObject_GC_TRACK(o) do { \ |
---|
269 | PyGC_Head *g = _Py_AS_GC(o); \ |
---|
270 | if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \ |
---|
271 | Py_FatalError("GC object already tracked"); \ |
---|
272 | g->gc.gc_refs = _PyGC_REFS_REACHABLE; \ |
---|
273 | g->gc.gc_next = _PyGC_generation0; \ |
---|
274 | g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \ |
---|
275 | g->gc.gc_prev->gc.gc_next = g; \ |
---|
276 | _PyGC_generation0->gc.gc_prev = g; \ |
---|
277 | } while (0); |
---|
278 | |
---|
279 | /* Tell the GC to stop tracking this object. |
---|
280 | * gc_next doesn't need to be set to NULL, but doing so is a good |
---|
281 | * way to provoke memory errors if calling code is confused. |
---|
282 | */ |
---|
283 | #define _PyObject_GC_UNTRACK(o) do { \ |
---|
284 | PyGC_Head *g = _Py_AS_GC(o); \ |
---|
285 | assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \ |
---|
286 | g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \ |
---|
287 | g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \ |
---|
288 | g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \ |
---|
289 | g->gc.gc_next = NULL; \ |
---|
290 | } while (0); |
---|
291 | |
---|
292 | PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t); |
---|
293 | PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *); |
---|
294 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, int); |
---|
295 | PyAPI_FUNC(void) PyObject_GC_Track(void *); |
---|
296 | PyAPI_FUNC(void) PyObject_GC_UnTrack(void *); |
---|
297 | PyAPI_FUNC(void) PyObject_GC_Del(void *); |
---|
298 | |
---|
299 | #define PyObject_GC_New(type, typeobj) \ |
---|
300 | ( (type *) _PyObject_GC_New(typeobj) ) |
---|
301 | #define PyObject_GC_NewVar(type, typeobj, n) \ |
---|
302 | ( (type *) _PyObject_GC_NewVar((typeobj), (n)) ) |
---|
303 | |
---|
304 | |
---|
305 | /* Utility macro to help write tp_traverse functions. |
---|
306 | * To use this macro, the tp_traverse function must name its arguments |
---|
307 | * "visit" and "arg". This is intended to keep tp_traverse functions |
---|
308 | * looking as much alike as possible. |
---|
309 | */ |
---|
310 | #define Py_VISIT(op) \ |
---|
311 | do { \ |
---|
312 | if (op) { \ |
---|
313 | int vret = visit((op), arg); \ |
---|
314 | if (vret) \ |
---|
315 | return vret; \ |
---|
316 | } \ |
---|
317 | } while (0) |
---|
318 | |
---|
319 | /* This is here for the sake of backwards compatibility. Extensions that |
---|
320 | * use the old GC API will still compile but the objects will not be |
---|
321 | * tracked by the GC. */ |
---|
322 | #define PyGC_HEAD_SIZE 0 |
---|
323 | #define PyObject_GC_Init(op) |
---|
324 | #define PyObject_GC_Fini(op) |
---|
325 | #define PyObject_AS_GC(op) (op) |
---|
326 | #define PyObject_FROM_GC(op) (op) |
---|
327 | |
---|
328 | |
---|
329 | /* Test if a type supports weak references */ |
---|
330 | #define PyType_SUPPORTS_WEAKREFS(t) \ |
---|
331 | (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \ |
---|
332 | && ((t)->tp_weaklistoffset > 0)) |
---|
333 | |
---|
334 | #define PyObject_GET_WEAKREFS_LISTPTR(o) \ |
---|
335 | ((PyObject **) (((char *) (o)) + (o)->ob_type->tp_weaklistoffset)) |
---|
336 | |
---|
337 | #ifdef __cplusplus |
---|
338 | } |
---|
339 | #endif |
---|
340 | #endif /* !Py_OBJIMPL_H */ |
---|