1 | #include <stdio.h> |
---|
2 | #include <unistd.h> |
---|
3 | #include <stdlib.h> |
---|
4 | #include <string.h> |
---|
5 | #include <signal.h> |
---|
6 | #include <sys/types.h> |
---|
7 | #include <sys/socket.h> |
---|
8 | #include <sys/wait.h> |
---|
9 | #include <sys/select.h> |
---|
10 | #include <sys/time.h> |
---|
11 | #include <fcntl.h> |
---|
12 | #include <netinet/in.h> |
---|
13 | #include <getopt.h> |
---|
14 | #include <errno.h> |
---|
15 | |
---|
16 | // The initial request load for a new renderer. |
---|
17 | #define INITIAL_LOAD 100000000.0 |
---|
18 | |
---|
19 | // The factor that the load is divided by every second. |
---|
20 | #define LOAD_DROP_OFF 2.0 |
---|
21 | |
---|
22 | // The broadcast interval (in seconds) |
---|
23 | #define BROADCAST_INTERVAL 5 |
---|
24 | |
---|
25 | // The load of a remote machine must be less than this factor to |
---|
26 | // justify redirection. |
---|
27 | #define LOAD_REDIRECT_FACTOR 0.8 |
---|
28 | |
---|
29 | // Maxium number of services we support |
---|
30 | #define MAX_SERVICES 100 |
---|
31 | |
---|
32 | float load = 0; // The present load average for this system. |
---|
33 | int memory_in_use = 0; // Total memory in use by this system. |
---|
34 | int children = 0; // Number of children running on this system. |
---|
35 | int send_fd; // The file descriptor we broadcast through. |
---|
36 | struct sockaddr_in send_addr; // The subnet address we broadcast to. |
---|
37 | fd_set saved_rfds; // Descriptors we're reading from. |
---|
38 | fd_set pipe_rfds; // Descriptors that are pipes to children. |
---|
39 | fd_set service_rfds[MAX_SERVICES]; |
---|
40 | |
---|
41 | struct host_info { |
---|
42 | struct in_addr in_addr; |
---|
43 | float load; |
---|
44 | int children; |
---|
45 | }; |
---|
46 | |
---|
47 | struct child_info { |
---|
48 | int memory; |
---|
49 | int pipefd; |
---|
50 | float requests; |
---|
51 | }; |
---|
52 | |
---|
53 | struct host_info host_array[100]; |
---|
54 | struct child_info child_array[100]; |
---|
55 | |
---|
56 | |
---|
57 | |
---|
58 | |
---|
59 | /* |
---|
60 | * min()/max() macros that also do |
---|
61 | * strict type-checking.. See the |
---|
62 | * "unnecessary" pointer comparison. |
---|
63 | */ |
---|
64 | #define min(x,y) ({ \ |
---|
65 | typeof(x) _x = (x); \ |
---|
66 | typeof(y) _y = (y); \ |
---|
67 | (void) (&_x == &_y); \ |
---|
68 | _x < _y ? _x : _y; }) |
---|
69 | |
---|
70 | #define max(x,y) ({ \ |
---|
71 | typeof(x) _x = (x); \ |
---|
72 | typeof(y) _y = (y); \ |
---|
73 | (void) (&_x == &_y); \ |
---|
74 | _x > _y ? _x : _y; }) |
---|
75 | |
---|
76 | int find_best_host(void) |
---|
77 | { |
---|
78 | int h; |
---|
79 | float best = load; |
---|
80 | int index = -1; |
---|
81 | //printf("My load is %f\n", best); |
---|
82 | for(h=0; h<sizeof(host_array)/sizeof(host_array[0]); h++) { |
---|
83 | if (host_array[h].in_addr.s_addr == 0) |
---|
84 | continue; |
---|
85 | //printf("%d I think load for %s is %f ", h, |
---|
86 | // inet_ntoa(host_array[h].in_addr), host_array[h].load); |
---|
87 | if (host_array[h].children <= children) { |
---|
88 | if (host_array[h].load < best) { |
---|
89 | //if ((random() % 100) < 75) { |
---|
90 | index = h; |
---|
91 | best = host_array[h].load; |
---|
92 | //} |
---|
93 | //printf(" Better\n"); |
---|
94 | } else { |
---|
95 | //printf(" Worse\n"); |
---|
96 | } |
---|
97 | } |
---|
98 | } |
---|
99 | |
---|
100 | //printf("I choose %d\n", index); |
---|
101 | return index; |
---|
102 | } |
---|
103 | |
---|
104 | |
---|
105 | void broadcast_load(void) |
---|
106 | { |
---|
107 | int msg[2]; |
---|
108 | msg[0] = htonl(load); |
---|
109 | msg[1] = htonl(children); |
---|
110 | int status; |
---|
111 | status = sendto(send_fd, &msg, sizeof(msg), 0, (struct sockaddr *)&send_addr, |
---|
112 | sizeof(send_addr)); |
---|
113 | if (status < 0) { |
---|
114 | perror("sendto"); |
---|
115 | } |
---|
116 | } |
---|
117 | |
---|
118 | close_child(int pipe_fd) |
---|
119 | { |
---|
120 | int i; |
---|
121 | for(i=0; i<sizeof(child_array)/sizeof(child_array[0]); i++) { |
---|
122 | if (child_array[i].pipefd == pipe_fd) { |
---|
123 | children--; |
---|
124 | memory_in_use -= child_array[i].memory; |
---|
125 | child_array[i].memory = 0; |
---|
126 | FD_CLR(child_array[i].pipefd, &saved_rfds); |
---|
127 | FD_CLR(child_array[i].pipefd, &pipe_rfds); |
---|
128 | close(child_array[i].pipefd); |
---|
129 | child_array[i].pipefd = 0; |
---|
130 | break; |
---|
131 | } |
---|
132 | } |
---|
133 | |
---|
134 | printf("processes=%d, memory=%d, load=%f\n", |
---|
135 | children, memory_in_use, load); |
---|
136 | |
---|
137 | broadcast_load(); |
---|
138 | } |
---|
139 | |
---|
140 | void note_request(int fd, float value) |
---|
141 | { |
---|
142 | int c; |
---|
143 | for(c=0; c < sizeof(child_array)/sizeof(child_array[0]); c++) { |
---|
144 | if (child_array[c].pipefd == fd) { |
---|
145 | child_array[c].requests += value; |
---|
146 | #ifdef DEBUGGING |
---|
147 | printf("Updating requests from pipefd %d to %f\n", |
---|
148 | child_array[c].pipefd, |
---|
149 | child_array[c].requests); |
---|
150 | #endif |
---|
151 | return; |
---|
152 | } |
---|
153 | } |
---|
154 | } |
---|
155 | |
---|
156 | void update_load_average(void) |
---|
157 | { |
---|
158 | static unsigned int counter; |
---|
159 | |
---|
160 | load = load / LOAD_DROP_OFF; |
---|
161 | float newload = 0.0; |
---|
162 | int c; |
---|
163 | for(c=0; c < sizeof(child_array)/sizeof(child_array[0]); c++) { |
---|
164 | if (child_array[c].pipefd != 0) { |
---|
165 | newload += child_array[c].requests * child_array[c].memory; |
---|
166 | child_array[c].requests = 0; |
---|
167 | } |
---|
168 | } |
---|
169 | load = load + newload; |
---|
170 | |
---|
171 | if ((counter++ % BROADCAST_INTERVAL) == 0) { |
---|
172 | broadcast_load(); |
---|
173 | } |
---|
174 | } |
---|
175 | |
---|
176 | volatile int sigalarm_set; |
---|
177 | void sigalarm_handler(int signum) |
---|
178 | { |
---|
179 | sigalarm_set = 1; |
---|
180 | } |
---|
181 | |
---|
182 | void help(const char *argv0) |
---|
183 | { |
---|
184 | fprintf(stderr, |
---|
185 | "Syntax: %s [-d] -b <broadcast port> -l <listen port> -s <subnet> -c 'command'\n", |
---|
186 | argv0); |
---|
187 | exit(1); |
---|
188 | } |
---|
189 | |
---|
190 | int |
---|
191 | clear_service_fd(int fd) |
---|
192 | { |
---|
193 | int n; |
---|
194 | |
---|
195 | for(n = 0; n < MAX_SERVICES; n++) |
---|
196 | { |
---|
197 | if (FD_ISSET(fd, &service_rfds[n])) |
---|
198 | FD_CLR(fd, &service_rfds[n]); |
---|
199 | } |
---|
200 | } |
---|
201 | |
---|
202 | int main(int argc, char *argv[]) |
---|
203 | { |
---|
204 | char server_command[MAX_SERVICES][1000]; |
---|
205 | int nservices = 0; |
---|
206 | int command_argc[MAX_SERVICES]; |
---|
207 | char **command_argv[MAX_SERVICES]; |
---|
208 | int val; |
---|
209 | int listen_fd[MAX_SERVICES]; |
---|
210 | int status; |
---|
211 | struct sockaddr_in listen_addr; |
---|
212 | struct sockaddr_in recv_addr; |
---|
213 | int listen_port[MAX_SERVICES]; |
---|
214 | int recv_port = -1; |
---|
215 | int connected_fds[10] = {0}; |
---|
216 | int subnet_addr; |
---|
217 | int debug_flag = 0; |
---|
218 | int n; |
---|
219 | |
---|
220 | listen_port[0] = -1; |
---|
221 | server_command[0][0] = 0; |
---|
222 | |
---|
223 | while(1) { |
---|
224 | int c; |
---|
225 | int this_option_optind = optind ? optind : 1; |
---|
226 | int option_index = 0; |
---|
227 | struct option long_options[] = { |
---|
228 | // name, has_arg, flag, val |
---|
229 | { 0,0,0,0 }, |
---|
230 | }; |
---|
231 | |
---|
232 | c = getopt_long(argc, argv, "+b:c:l:s:d", long_options, &option_index); |
---|
233 | if (c == -1) |
---|
234 | break; |
---|
235 | |
---|
236 | switch(c) { |
---|
237 | case 'd': |
---|
238 | debug_flag = 1; |
---|
239 | break; |
---|
240 | case 'b': |
---|
241 | recv_port = strtoul(optarg,0,0); |
---|
242 | break; |
---|
243 | case 'c': |
---|
244 | strncpy(server_command[nservices], optarg, sizeof(server_command[0])); |
---|
245 | |
---|
246 | if (listen_port[nservices] == -1) { |
---|
247 | fprintf(stderr,"Must specify -l port before each -c command.\n"); |
---|
248 | return 1; |
---|
249 | } |
---|
250 | |
---|
251 | nservices++; |
---|
252 | listen_port[nservices] = -1; |
---|
253 | break; |
---|
254 | case 'l': |
---|
255 | listen_port[nservices] = strtoul(optarg,0,0); |
---|
256 | break; |
---|
257 | case 's': |
---|
258 | send_addr.sin_addr.s_addr = htonl(inet_network(optarg, |
---|
259 | &send_addr.sin_addr)); |
---|
260 | if (send_addr.sin_addr.s_addr == -1) { |
---|
261 | fprintf(stderr,"Invalid subnet broadcast address"); |
---|
262 | return 1; |
---|
263 | } |
---|
264 | break; |
---|
265 | default: |
---|
266 | fprintf(stderr,"Don't know what option '%c'.\n", c); |
---|
267 | return 1; |
---|
268 | } |
---|
269 | } |
---|
270 | |
---|
271 | if (nservices == 0 || |
---|
272 | recv_port == -1 || |
---|
273 | subnet_addr == -1 || |
---|
274 | server_command[0][0]=='\0') { |
---|
275 | help(argv[0]); |
---|
276 | return 1; |
---|
277 | } |
---|
278 | |
---|
279 | for(n = 0; n < nservices; n++) { |
---|
280 | // Parse the command arguments... |
---|
281 | |
---|
282 | command_argc[n]=0; |
---|
283 | command_argv[n] = malloc((command_argc[n]+2) * sizeof(char *)); |
---|
284 | command_argv[n][command_argc[n]] = strtok(server_command[n], " \t"); |
---|
285 | command_argc[n]++; |
---|
286 | while( (command_argv[n][command_argc[n]] = strtok(NULL, " \t"))) { |
---|
287 | command_argv[n] = realloc(command_argv[n], (command_argc[n]+2) * sizeof(char *)); |
---|
288 | command_argc[n]++; |
---|
289 | } |
---|
290 | |
---|
291 | // Create a socket for listening. |
---|
292 | listen_fd[n] = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); |
---|
293 | if (listen_fd[n] < 0) { |
---|
294 | perror("socket"); |
---|
295 | exit(1); |
---|
296 | } |
---|
297 | |
---|
298 | // If program is killed, drop the socket address reservation immediately. |
---|
299 | val = 1; |
---|
300 | status = setsockopt(listen_fd[n], SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val)); |
---|
301 | if (status < 0) { |
---|
302 | perror("setsockopt"); |
---|
303 | // Not fatal. Keep on going. |
---|
304 | } |
---|
305 | |
---|
306 | // Bind this address to the socket. |
---|
307 | listen_addr.sin_family = AF_INET; |
---|
308 | listen_addr.sin_port = htons(listen_port[n]); |
---|
309 | listen_addr.sin_addr.s_addr = htonl(INADDR_ANY); |
---|
310 | status = bind(listen_fd[n], (struct sockaddr *)&listen_addr, |
---|
311 | sizeof(listen_addr)); |
---|
312 | if (status < 0) { |
---|
313 | perror("bind"); |
---|
314 | exit(1); |
---|
315 | } |
---|
316 | |
---|
317 | // Listen on the specified port. |
---|
318 | status = listen(listen_fd[n],5); |
---|
319 | if (status < 0) { |
---|
320 | perror("listen"); |
---|
321 | } |
---|
322 | } |
---|
323 | |
---|
324 | // Create a socket for broadcast. |
---|
325 | send_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); |
---|
326 | if (send_fd < 0) { |
---|
327 | perror("socket"); |
---|
328 | exit(1); |
---|
329 | } |
---|
330 | |
---|
331 | // If program is killed, drop the socket address reservation immediately. |
---|
332 | val = 1; |
---|
333 | status = setsockopt(send_fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val)); |
---|
334 | if (status < 0) { |
---|
335 | perror("setsockopt"); |
---|
336 | // Not fatal. Keep on going. |
---|
337 | } |
---|
338 | |
---|
339 | // We're going to broadcast through this socket. |
---|
340 | val = 1; |
---|
341 | status = setsockopt(send_fd, SOL_SOCKET, SO_BROADCAST, &val, sizeof(val)); |
---|
342 | if (status < 0) { |
---|
343 | perror("setsockopt"); |
---|
344 | // Not fatal. Keep on going. |
---|
345 | } |
---|
346 | |
---|
347 | // Bind this address to the socket. |
---|
348 | recv_addr.sin_family = AF_INET; |
---|
349 | recv_addr.sin_port = htons(recv_port); |
---|
350 | recv_addr.sin_addr.s_addr = htonl(INADDR_ANY); |
---|
351 | status = bind(send_fd, (struct sockaddr *)&recv_addr, |
---|
352 | sizeof(recv_addr)); |
---|
353 | if (status < 0) { |
---|
354 | perror("bind"); |
---|
355 | exit(1); |
---|
356 | } |
---|
357 | |
---|
358 | // Set up the address that we broadcast to. |
---|
359 | send_addr.sin_family = AF_INET; |
---|
360 | send_addr.sin_port = htons(recv_port); |
---|
361 | |
---|
362 | // Set up a signal handler for the alarm interrupt. |
---|
363 | // It doesn't do anything other than interrupt select() below. |
---|
364 | if (signal(SIGALRM,sigalarm_handler) == SIG_ERR) { |
---|
365 | perror("signal SIGALRM"); |
---|
366 | } |
---|
367 | |
---|
368 | struct itimerval itvalue = { |
---|
369 | {1, 0}, {1, 0} |
---|
370 | }; |
---|
371 | status = setitimer(ITIMER_REAL, &itvalue, NULL); |
---|
372 | if (status != 0) { |
---|
373 | perror("setitimer"); |
---|
374 | } |
---|
375 | |
---|
376 | // We're ready to go. Before going into the main loop, |
---|
377 | // broadcast a load announcement to other machines. |
---|
378 | broadcast_load(); |
---|
379 | |
---|
380 | int maxfd = send_fd; |
---|
381 | FD_ZERO(&saved_rfds); |
---|
382 | FD_ZERO(&pipe_rfds); |
---|
383 | |
---|
384 | for(n = 0; n < nservices; n++) { |
---|
385 | FD_ZERO(&service_rfds[n]); |
---|
386 | FD_SET(listen_fd[n], &saved_rfds); |
---|
387 | if (listen_fd[n] > maxfd) |
---|
388 | maxfd = listen_fd[n]; |
---|
389 | } |
---|
390 | |
---|
391 | FD_SET(send_fd, &saved_rfds); |
---|
392 | |
---|
393 | if (debug_flag == 0) { |
---|
394 | if ( daemon(0,0) != 0 ) { |
---|
395 | perror("daemon"); |
---|
396 | exit(1); |
---|
397 | } |
---|
398 | } |
---|
399 | |
---|
400 | while(1) { |
---|
401 | |
---|
402 | fd_set rfds = saved_rfds; |
---|
403 | |
---|
404 | status = select(maxfd+1, &rfds, NULL, NULL, 0); |
---|
405 | if (status <= 0) { |
---|
406 | if (sigalarm_set) { |
---|
407 | update_load_average(); |
---|
408 | sigalarm_set = 0; |
---|
409 | } |
---|
410 | continue; |
---|
411 | } |
---|
412 | |
---|
413 | |
---|
414 | int accepted = 0; |
---|
415 | for(n = 0; n < nservices; n++) { |
---|
416 | if (FD_ISSET(listen_fd[n], &rfds)) { |
---|
417 | // Accept a new connection. |
---|
418 | struct sockaddr_in newaddr; |
---|
419 | unsigned int addrlen = sizeof(newaddr); |
---|
420 | int newfd = accept(listen_fd[n], (struct sockaddr *)&newaddr, &addrlen); |
---|
421 | if (newfd < 0) { |
---|
422 | perror("accept"); |
---|
423 | continue; |
---|
424 | } |
---|
425 | |
---|
426 | printf("New connection from %s\n", inet_ntoa(newaddr.sin_addr)); |
---|
427 | FD_SET(newfd, &saved_rfds); |
---|
428 | maxfd = max(maxfd, newfd); |
---|
429 | FD_SET(newfd, &service_rfds[n]); |
---|
430 | accepted = 1; |
---|
431 | } |
---|
432 | } |
---|
433 | |
---|
434 | if (accepted) |
---|
435 | continue; |
---|
436 | |
---|
437 | if (FD_ISSET(send_fd, &rfds)) { |
---|
438 | int buffer[1000]; |
---|
439 | struct sockaddr_in peer_addr; |
---|
440 | unsigned int len = sizeof(peer_addr); |
---|
441 | status = recvfrom(send_fd, buffer, sizeof(buffer), 0, |
---|
442 | (struct sockaddr*)&peer_addr, &len); |
---|
443 | if (status < 0) { |
---|
444 | perror("recvfrom"); |
---|
445 | continue; |
---|
446 | } |
---|
447 | if (status != 8) { |
---|
448 | fprintf(stderr,"Bogus message from %s\n", |
---|
449 | inet_ntoa(peer_addr.sin_addr)); |
---|
450 | continue; |
---|
451 | } |
---|
452 | float peer_load = ntohl(buffer[0]); |
---|
453 | int peer_procs = ntohl(buffer[1]); |
---|
454 | //printf("Load for %s is %f (%d processes).\n", |
---|
455 | // inet_ntoa(peer_addr.sin_addr), peer_load, peer_procs); |
---|
456 | int h; |
---|
457 | int free_index=-1; |
---|
458 | int found = 0; |
---|
459 | for(h=0; h<sizeof(host_array)/sizeof(host_array[0]); h++) { |
---|
460 | if (host_array[h].in_addr.s_addr == peer_addr.sin_addr.s_addr) { |
---|
461 | if (host_array[h].children != peer_procs) { |
---|
462 | printf("Load for %s is %f (%d processes).\n", |
---|
463 | inet_ntoa(peer_addr.sin_addr), peer_load, peer_procs); |
---|
464 | } |
---|
465 | host_array[h].load = peer_load; |
---|
466 | host_array[h].children = peer_procs; |
---|
467 | found = 1; |
---|
468 | break; |
---|
469 | } |
---|
470 | if (host_array[h].in_addr.s_addr == 0 && free_index == -1) { |
---|
471 | free_index = h; |
---|
472 | } |
---|
473 | } |
---|
474 | if (!found) { |
---|
475 | host_array[free_index].in_addr.s_addr = peer_addr.sin_addr.s_addr; |
---|
476 | host_array[free_index].load = peer_load; |
---|
477 | } |
---|
478 | continue; |
---|
479 | } |
---|
480 | |
---|
481 | int i; |
---|
482 | for(i=0; i<maxfd+1; i++) { |
---|
483 | if (FD_ISSET(i,&rfds)) { |
---|
484 | |
---|
485 | // If this is a pipe, get the load. Update. |
---|
486 | if (FD_ISSET(i,&pipe_rfds)) { |
---|
487 | float value; |
---|
488 | status = read(i, &value, sizeof(value)); |
---|
489 | if (status != 4) { |
---|
490 | //fprintf(stderr,"error reading pipe, child ended?\n"); |
---|
491 | close_child(i); |
---|
492 | /*close(i); |
---|
493 | FD_CLR(i, &saved_rfds); |
---|
494 | FD_CLR(i, &pipe_rfds); */ |
---|
495 | } else { |
---|
496 | note_request(i,value); |
---|
497 | } |
---|
498 | continue; |
---|
499 | } |
---|
500 | |
---|
501 | // This must be a descriptor that we're waiting to from |
---|
502 | // for the memory footprint. Get it. |
---|
503 | int msg; |
---|
504 | status = read(i, &msg, 4); |
---|
505 | if (status != 4) { |
---|
506 | fprintf(stderr,"Bad status on read (%d).", status); |
---|
507 | FD_CLR(i, &saved_rfds); |
---|
508 | clear_service_fd(i); |
---|
509 | close(i); |
---|
510 | continue; |
---|
511 | } |
---|
512 | |
---|
513 | // find the new memory increment |
---|
514 | int newmemory = ntohl(msg); |
---|
515 | |
---|
516 | // Find the best host to create a new child on. |
---|
517 | int index = find_best_host(); |
---|
518 | |
---|
519 | // Only redirect if another host's load is significantly less |
---|
520 | // than our own... |
---|
521 | if (index != -1 && |
---|
522 | (host_array[index].load < (LOAD_REDIRECT_FACTOR * load))) { |
---|
523 | |
---|
524 | // If we're redirecting to another machine, give that machine |
---|
525 | // an extra boost in our copy of the load statistics. This will |
---|
526 | // keep us from sending the very next job to it. Eventually, the |
---|
527 | // other machine will broadcast its real load and we can make an |
---|
528 | // informed decision as to who redirect to again. |
---|
529 | host_array[index].load += newmemory * INITIAL_LOAD; |
---|
530 | |
---|
531 | // Redirect to another machine. |
---|
532 | printf("Redirecting to %s\n", |
---|
533 | inet_ntoa(host_array[index].in_addr)); |
---|
534 | write(i, &host_array[index].in_addr.s_addr, 4); |
---|
535 | FD_CLR(i, &saved_rfds); |
---|
536 | clear_service_fd(i); |
---|
537 | close(i); |
---|
538 | continue; |
---|
539 | } |
---|
540 | |
---|
541 | memory_in_use += newmemory; |
---|
542 | load += 2*INITIAL_LOAD; |
---|
543 | broadcast_load(); |
---|
544 | printf("Accepted new job with memory %d\n", newmemory); |
---|
545 | //printf("My load is now %f\n", load); |
---|
546 | |
---|
547 | // accept the connection. |
---|
548 | msg = 0; |
---|
549 | write(i, &msg, 4); |
---|
550 | |
---|
551 | int pair[2]; |
---|
552 | status = pipe(pair); |
---|
553 | if (status != 0) { |
---|
554 | perror("pipe"); |
---|
555 | } |
---|
556 | |
---|
557 | // Make the child side of the pipe non-blocking... |
---|
558 | status = fcntl(pair[1], F_SETFL, O_NONBLOCK); |
---|
559 | if (status < 0) { |
---|
560 | perror("fcntl"); |
---|
561 | } |
---|
562 | |
---|
563 | // Fork the new process. Connect i/o to the new socket. |
---|
564 | status = fork(); |
---|
565 | if (status < 0) { |
---|
566 | perror("fork"); |
---|
567 | } else if (status == 0) { |
---|
568 | |
---|
569 | for(n = 0; n < MAX_SERVICES; n++) { |
---|
570 | if (FD_ISSET(i, &service_rfds[n])) { |
---|
571 | |
---|
572 | // disassociate |
---|
573 | if ( daemon(0,1) == 0 ) { |
---|
574 | int fd; |
---|
575 | |
---|
576 | dup2(i,0); // stdin |
---|
577 | dup2(i,1); // stdout |
---|
578 | dup2(i,2); // stderr |
---|
579 | dup2(pair[1],3); |
---|
580 | // read end of pipe moved, and left open to prevent SIGPIPE |
---|
581 | dup2(pair[0],4); |
---|
582 | |
---|
583 | for(fd=5; fd<FD_SETSIZE; fd++) |
---|
584 | close(fd); |
---|
585 | |
---|
586 | execvp(command_argv[n][0], command_argv[n]); |
---|
587 | } |
---|
588 | _exit(errno); |
---|
589 | } |
---|
590 | } |
---|
591 | _exit(EINVAL); |
---|
592 | |
---|
593 | } else { |
---|
594 | int c; |
---|
595 | // reap initial child which will exit immediately (grandchild continues) |
---|
596 | waitpid(status, NULL, 0); |
---|
597 | for(c=0; c<sizeof(child_array)/sizeof(child_array[0]); c++) { |
---|
598 | if (child_array[c].pipefd == 0) { |
---|
599 | child_array[c].memory = newmemory; |
---|
600 | child_array[c].pipefd = pair[0]; |
---|
601 | child_array[c].requests = INITIAL_LOAD; |
---|
602 | status = close(pair[1]); |
---|
603 | if (status != 0) { |
---|
604 | perror("close pair[1]"); |
---|
605 | } |
---|
606 | FD_SET(pair[0], &saved_rfds); |
---|
607 | FD_SET(pair[0], &pipe_rfds); |
---|
608 | maxfd = max(pair[0], maxfd); |
---|
609 | break; |
---|
610 | } |
---|
611 | } |
---|
612 | |
---|
613 | children++; |
---|
614 | broadcast_load(); |
---|
615 | } |
---|
616 | |
---|
617 | |
---|
618 | FD_CLR(i, &saved_rfds); |
---|
619 | clear_service_fd(i); |
---|
620 | close(i); |
---|
621 | break; |
---|
622 | } |
---|
623 | |
---|
624 | } // for all connected_fds |
---|
625 | |
---|
626 | } // while(1) |
---|
627 | |
---|
628 | } |
---|
629 | |
---|