source: trunk/packages/vizservers/nanovis/Vector3.h @ 1028

Last change on this file since 1028 was 1028, checked in by gah, 13 years ago

various cleanups

File size: 3.5 KB
Line 
1/*
2 * ----------------------------------------------------------------------
3 * Vector3.h : Vector class with 3 components
4 *
5 * ======================================================================
6 *  AUTHOR:  Wei Qiao <qiaow@purdue.edu>
7 *           Purdue Rendering and Perceptualization Lab (PURPL)
8 *
9 *  Copyright (c) 2004-2006  Purdue Research Foundation
10 *
11 *  See the file "license.terms" for information on usage and
12 *  redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES.
13 * ======================================================================
14 */
15#ifndef _VECTOR3_H_
16#define _VECTOR3_H_
17
18/*
19 * FIXME: The files that explicitly use the "rot*", "length", "distance", or
20 * "normalize" methods, should include the following headers.  Don't do it
21 * here.
22 */
23#include <math.h>
24#include "Mat4x4.h"
25
26class Vector3{
27private:
28    float radians(float degree) const {
29        return (M_PI * degree) / 180.0;
30    }
31public:
32    float x, y, z;
33    Vector3(void) {
34        /*empty*/
35    }
36    Vector3(float x_val, float y_val, float z_val) {
37        set(x_val, y_val, z_val);
38    }
39    Vector3 operator +(float scalar) {
40        return Vector3(x + scalar, y + scalar, z + scalar);
41    }
42    Vector3 operator -(float scalar) {
43        return Vector3(x - scalar, y - scalar, z - scalar);
44    }
45    Vector3 operator *(float scalar) {
46        return Vector3(x * scalar, y * scalar, z * scalar);
47    }
48    Vector3 operator /(float scalar) {
49        return Vector3(x / scalar, y / scalar, z / scalar);
50    }
51    Vector3 operator +(Vector3 &op2) {
52        return Vector3(x + op2.x, y + op2.y, z + op2.z);
53    }
54    Vector3 operator -(Vector3 &op2) {
55        return Vector3(x - op2.x, y - op2.y, z - op2.z);
56    }
57    float operator *(Vector3 &op2){
58        return x*op2.x + y*op2.y + z*op2.z;
59    }
60    float dot(const Vector3& vec) const {
61        return x*vec.x + y*vec.y + z*vec.z;
62    }
63    bool equal(Vector3 &op2) {
64        return (x==op2.x) && (y==op2.y) && (z==op2.z);
65    }
66    Vector3 cross(Vector3 op2) {
67        return Vector3(y*op2.z - z*op2.y, z*op2.x - x*op2.z, x*op2.y - y*op2.x);
68    }
69    void operator<(Vector3 &op2) {
70        set(op2.x, op2.y, op2.z);
71    }
72    Vector3 operator ^(Vector3 &op2) {
73        return cross(op2);
74    }
75    Vector3 normalize(void) {
76        float len = length();
77        return Vector3(x / len, y / len, z / len);
78    }
79    Vector3 rot_x(float degree) {
80        float rad = radians(degree);
81        return Vector3(x,
82                       y*cos(rad) - z*sin(rad),
83                       y*sin(rad) + z*cos(rad));
84    }
85    Vector3 rot_y(float degree) {
86        float rad = radians(degree);
87        return Vector3(x*cos(rad) + z*sin(rad),
88                       y,
89                       -x*sin(rad) + z*cos(rad));
90    }
91    Vector3 rot_z(float degree) {
92        float rad = radians(degree);
93        return Vector3(x*cos(rad) - y*sin(rad),
94                       x*sin(rad) + y*cos(rad),
95                       z);
96    }
97    void set(float x_val, float y_val, float z_val) {
98        x = x_val, y = y_val, z = z_val;
99    }
100    void print(void){
101        fprintf(stderr, "x:%f, y:%f, z:%f\n", x, y, z);
102    }
103    float distance(Vector3 &v) const {
104        return sqrtf(distanceSquare(v));
105    }
106    float distanceSquare(Vector3 &v) const {
107        return (x-v.x)*(x-v.x) + (y-v.y)*(y-v.y) + (z-v.z)*(z-v.z);
108    }
109    float distanceSquare(float vx, float vy, float vz) const {
110        return (x-vx)*(x-vx) + (y-vy)*(y-vy) + (z-vz)*(z-vz);
111    }
112    void transform(const Vector3& v, const Mat4x4& mat) {
113        const float* m = mat.m;
114        x = m[0] * v.x + m[4] * v.y + m[8]  * v.z + m[12];
115        y = m[1] * v.x + m[5] * v.y + m[9]  * v.z + m[13];
116        z = m[2] * v.x + m[6] * v.y + m[10] * v.z + m[14];
117    }
118    float length(void) const {
119        return sqrt(x*x + y*y + z*z);
120    }
121};
122
123
124#endif
Note: See TracBrowser for help on using the repository browser.