1 | /* -*- mode: c++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
---|
2 | /* |
---|
3 | * ---------------------------------------------------------------------- |
---|
4 | * VolumeRenderer.cpp : VolumeRenderer class for volume visualization |
---|
5 | * |
---|
6 | * ====================================================================== |
---|
7 | * AUTHOR: Wei Qiao <qiaow@purdue.edu> |
---|
8 | * Purdue Rendering and Perceptualization Lab (PURPL) |
---|
9 | * |
---|
10 | * Copyright (c) 2004-2013 HUBzero Foundation, LLC |
---|
11 | * |
---|
12 | * See the file "license.terms" for information on usage and |
---|
13 | * redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES. |
---|
14 | * ====================================================================== |
---|
15 | */ |
---|
16 | #include <stdlib.h> |
---|
17 | #include <float.h> |
---|
18 | |
---|
19 | #include <vector> |
---|
20 | |
---|
21 | #include <GL/glew.h> |
---|
22 | |
---|
23 | #include <vrmath/Vector3f.h> |
---|
24 | #include <vrmath/Matrix4x4d.h> |
---|
25 | |
---|
26 | #include "nanovis.h" |
---|
27 | #include "VolumeRenderer.h" |
---|
28 | #include "Plane.h" |
---|
29 | #include "ConvexPolygon.h" |
---|
30 | #include "NvStdVertexShader.h" |
---|
31 | #include "Trace.h" |
---|
32 | |
---|
33 | using namespace vrmath; |
---|
34 | |
---|
35 | VolumeRenderer::VolumeRenderer() |
---|
36 | { |
---|
37 | initShaders(); |
---|
38 | |
---|
39 | _volumeInterpolator = new VolumeInterpolator(); |
---|
40 | } |
---|
41 | |
---|
42 | VolumeRenderer::~VolumeRenderer() |
---|
43 | { |
---|
44 | delete _cutplaneShader; |
---|
45 | delete _zincBlendeShader; |
---|
46 | delete _regularVolumeShader; |
---|
47 | delete _stdVertexShader; |
---|
48 | delete _volumeInterpolator; |
---|
49 | } |
---|
50 | |
---|
51 | //initialize the volume shaders |
---|
52 | void VolumeRenderer::initShaders() |
---|
53 | { |
---|
54 | _cutplaneShader = new NvShader(); |
---|
55 | _cutplaneShader->loadVertexProgram("cutplane_vp.cg", "main"); |
---|
56 | _cutplaneShader->loadFragmentProgram("cutplane_fp.cg", "main"); |
---|
57 | |
---|
58 | //standard vertex program |
---|
59 | _stdVertexShader = new NvStdVertexShader(); |
---|
60 | |
---|
61 | //volume rendering shader: one cubic volume |
---|
62 | _regularVolumeShader = new NvRegularVolumeShader(); |
---|
63 | |
---|
64 | //volume rendering shader: one zincblende orbital volume. |
---|
65 | //This shader renders one orbital of the simulation. |
---|
66 | //A sim has S, P, D, SS orbitals. thus a full rendering requires 4 zincblende orbital volumes. |
---|
67 | //A zincblende orbital volume is decomposed into 2 "interlocking" cubic 4-component volumes and passed to the shader. |
---|
68 | //We render each orbital with a independent transfer functions then blend the result. |
---|
69 | // |
---|
70 | //The engine is already capable of rendering multiple volumes and combine them. Thus, we just invoke this shader on |
---|
71 | //S, P, D and SS orbitals with different transfor functions. The result is a multi-orbital rendering. |
---|
72 | _zincBlendeShader = new NvZincBlendeVolumeShader(); |
---|
73 | } |
---|
74 | |
---|
75 | struct SortElement { |
---|
76 | float z; |
---|
77 | int volumeId; |
---|
78 | int sliceId; |
---|
79 | |
---|
80 | SortElement(float _z, int _v, int _s) : |
---|
81 | z(_z), |
---|
82 | volumeId(_v), |
---|
83 | sliceId(_s) |
---|
84 | {} |
---|
85 | }; |
---|
86 | |
---|
87 | static int sliceSort(const void *a, const void *b) |
---|
88 | { |
---|
89 | if ((*((SortElement*)a)).z > (*((SortElement*)b)).z) |
---|
90 | return 1; |
---|
91 | else |
---|
92 | return -1; |
---|
93 | } |
---|
94 | |
---|
95 | void |
---|
96 | VolumeRenderer::renderAll() |
---|
97 | { |
---|
98 | size_t total_rendered_slices = 0; |
---|
99 | |
---|
100 | if (_volumeInterpolator->isStarted()) { |
---|
101 | #ifdef notdef |
---|
102 | ani_vol = _volumeInterpolator->getVolume(); |
---|
103 | ani_tf = ani_vol->transferFunction(); |
---|
104 | #endif |
---|
105 | TRACE("VOLUME INTERPOLATOR IS STARTED ----------------------------"); |
---|
106 | } |
---|
107 | // Determine the volumes that are to be rendered. |
---|
108 | std::vector<Volume *> volumes; |
---|
109 | for (NanoVis::VolumeHashmap::iterator itr = NanoVis::volumeTable.begin(); |
---|
110 | itr != NanoVis::volumeTable.end(); ++itr) { |
---|
111 | Volume *volume = itr->second; |
---|
112 | if (!volume->visible()) { |
---|
113 | continue; // Skip this volume |
---|
114 | } |
---|
115 | // BE CAREFUL: Set the number of slices to something slightly |
---|
116 | // different for each volume. If we have identical volumes at exactly |
---|
117 | // the same position with exactly the same number of slices, the |
---|
118 | // second volume will overwrite the first, so the first won't appear |
---|
119 | // at all. |
---|
120 | volumes.push_back(volume); |
---|
121 | volume->numSlices(256 - volumes.size()); |
---|
122 | } |
---|
123 | |
---|
124 | glPushAttrib(GL_ENABLE_BIT); |
---|
125 | |
---|
126 | //two dimension pointer array |
---|
127 | ConvexPolygon ***polys = new ConvexPolygon**[volumes.size()]; |
---|
128 | //number of actual slices for each volume |
---|
129 | size_t *actual_slices = new size_t[volumes.size()]; |
---|
130 | float *z_steps = new float[volumes.size()]; |
---|
131 | |
---|
132 | TRACE("start loop %d", volumes.size()); |
---|
133 | for (size_t i = 0; i < volumes.size(); i++) { |
---|
134 | Volume *volume = volumes[i]; |
---|
135 | polys[i] = NULL; |
---|
136 | actual_slices[i] = 0; |
---|
137 | |
---|
138 | int n_slices = volume->numSlices(); |
---|
139 | if (volume->isosurface()) { |
---|
140 | // double the number of slices |
---|
141 | n_slices <<= 1; |
---|
142 | } |
---|
143 | |
---|
144 | //volume start location |
---|
145 | Vector3f volPos = volume->location(); |
---|
146 | Vector3f volScaling = volume->getPhysicalScaling(); |
---|
147 | |
---|
148 | TRACE("VOL POS: %g %g %g", |
---|
149 | volPos.x, volPos.y, volPos.z); |
---|
150 | TRACE("VOL SCALE: %g %g %g", |
---|
151 | volScaling.x, volScaling.y, volScaling.z); |
---|
152 | |
---|
153 | double x0 = 0; |
---|
154 | double y0 = 0; |
---|
155 | double z0 = 0; |
---|
156 | |
---|
157 | Matrix4x4d model_view_no_trans, model_view_trans; |
---|
158 | Matrix4x4d model_view_no_trans_inverse, model_view_trans_inverse; |
---|
159 | |
---|
160 | //initialize volume plane with world coordinates |
---|
161 | nv::Plane volume_planes[6]; |
---|
162 | volume_planes[0].setCoeffs( 1, 0, 0, -x0); |
---|
163 | volume_planes[1].setCoeffs(-1, 0, 0, x0+1); |
---|
164 | volume_planes[2].setCoeffs( 0, 1, 0, -y0); |
---|
165 | volume_planes[3].setCoeffs( 0, -1, 0, y0+1); |
---|
166 | volume_planes[4].setCoeffs( 0, 0, 1, -z0); |
---|
167 | volume_planes[5].setCoeffs( 0, 0, -1, z0+1); |
---|
168 | |
---|
169 | //get modelview matrix with no translation |
---|
170 | glPushMatrix(); |
---|
171 | glScalef(volScaling.x, volScaling.y, volScaling.z); |
---|
172 | |
---|
173 | glEnable(GL_DEPTH_TEST); |
---|
174 | |
---|
175 | GLdouble mv_no_trans[16]; |
---|
176 | glGetDoublev(GL_MODELVIEW_MATRIX, mv_no_trans); |
---|
177 | |
---|
178 | model_view_no_trans = Matrix4x4d(mv_no_trans); |
---|
179 | model_view_no_trans_inverse = model_view_no_trans.inverse(); |
---|
180 | |
---|
181 | glPopMatrix(); |
---|
182 | |
---|
183 | //get modelview matrix with translation |
---|
184 | glPushMatrix(); |
---|
185 | glTranslatef(volPos.x, volPos.y, volPos.z); |
---|
186 | glScalef(volScaling.x, volScaling.y, volScaling.z); |
---|
187 | |
---|
188 | GLdouble mv_trans[16]; |
---|
189 | glGetDoublev(GL_MODELVIEW_MATRIX, mv_trans); |
---|
190 | |
---|
191 | model_view_trans = Matrix4x4d(mv_trans); |
---|
192 | model_view_trans_inverse = model_view_trans.inverse(); |
---|
193 | |
---|
194 | model_view_trans.print(); |
---|
195 | |
---|
196 | //draw volume bounding box with translation (the correct location in |
---|
197 | //space) |
---|
198 | if (volume->outline()) { |
---|
199 | float olcolor[3]; |
---|
200 | volume->getOutlineColor(olcolor); |
---|
201 | drawBoundingBox(x0, y0, z0, x0+1, y0+1, z0+1, |
---|
202 | (double)olcolor[0], (double)olcolor[1], (double)olcolor[2], |
---|
203 | 1.5); |
---|
204 | } |
---|
205 | glPopMatrix(); |
---|
206 | |
---|
207 | // transform volume_planes to eye coordinates. |
---|
208 | // Need to transform without translation since we don't want |
---|
209 | // to translate plane normals, just rotate them |
---|
210 | for (size_t j = 0; j < 6; j++) { |
---|
211 | volume_planes[j].transform(model_view_no_trans); |
---|
212 | } |
---|
213 | double eyeMinX, eyeMaxX, eyeMinY, eyeMaxY, zNear, zFar; |
---|
214 | getEyeSpaceBounds(model_view_no_trans, |
---|
215 | eyeMinX, eyeMaxX, |
---|
216 | eyeMinY, eyeMaxY, |
---|
217 | zNear, zFar); |
---|
218 | |
---|
219 | //compute actual rendering slices |
---|
220 | float z_step = fabs(zNear-zFar)/n_slices; |
---|
221 | z_steps[i] = z_step; |
---|
222 | size_t n_actual_slices; |
---|
223 | |
---|
224 | if (volume->dataEnabled()) { |
---|
225 | if (z_step == 0.0f) |
---|
226 | n_actual_slices = 1; |
---|
227 | else |
---|
228 | n_actual_slices = (int)(fabs(zNear-zFar)/z_step + 1); |
---|
229 | polys[i] = new ConvexPolygon*[n_actual_slices]; |
---|
230 | } else { |
---|
231 | n_actual_slices = 0; |
---|
232 | polys[i] = NULL; |
---|
233 | } |
---|
234 | actual_slices[i] = n_actual_slices; |
---|
235 | |
---|
236 | TRACE("near: %g far: %g eye space bounds: (%g,%g)-(%g,%g) z_step: %g slices: %d", |
---|
237 | zNear, zFar, eyeMinX, eyeMaxX, eyeMinY, eyeMaxY, z_step, n_actual_slices); |
---|
238 | |
---|
239 | Vector4f vert1, vert2, vert3, vert4; |
---|
240 | |
---|
241 | // Render cutplanes first with depth test enabled. They will mark the |
---|
242 | // image with their depth values. Then we render other volume slices. |
---|
243 | // These volume slices will be occluded correctly by the cutplanes and |
---|
244 | // vice versa. |
---|
245 | |
---|
246 | for (int j = 0; j < volume->getCutplaneCount(); j++) { |
---|
247 | if (!volume->isCutplaneEnabled(j)) { |
---|
248 | continue; |
---|
249 | } |
---|
250 | float offset = volume->getCutplane(j)->offset; |
---|
251 | int axis = volume->getCutplane(j)->orient; |
---|
252 | |
---|
253 | switch (axis) { |
---|
254 | case 1: |
---|
255 | vert1 = Vector4f(offset, 0, 0, 1); |
---|
256 | vert2 = Vector4f(offset, 1, 0, 1); |
---|
257 | vert3 = Vector4f(offset, 1, 1, 1); |
---|
258 | vert4 = Vector4f(offset, 0, 1, 1); |
---|
259 | break; |
---|
260 | case 2: |
---|
261 | vert1 = Vector4f(0, offset, 0, 1); |
---|
262 | vert2 = Vector4f(1, offset, 0, 1); |
---|
263 | vert3 = Vector4f(1, offset, 1, 1); |
---|
264 | vert4 = Vector4f(0, offset, 1, 1); |
---|
265 | break; |
---|
266 | case 3: |
---|
267 | default: |
---|
268 | vert1 = Vector4f(0, 0, offset, 1); |
---|
269 | vert2 = Vector4f(1, 0, offset, 1); |
---|
270 | vert3 = Vector4f(1, 1, offset, 1); |
---|
271 | vert4 = Vector4f(0, 1, offset, 1); |
---|
272 | break; |
---|
273 | } |
---|
274 | |
---|
275 | Vector4f texcoord1 = vert1; |
---|
276 | Vector4f texcoord2 = vert2; |
---|
277 | Vector4f texcoord3 = vert3; |
---|
278 | Vector4f texcoord4 = vert4; |
---|
279 | |
---|
280 | _cutplaneShader->bind(); |
---|
281 | _cutplaneShader->setFPTextureParameter("volume", volume->textureID()); |
---|
282 | _cutplaneShader->setFPTextureParameter("tf", volume->transferFunction()->id()); |
---|
283 | |
---|
284 | glPushMatrix(); |
---|
285 | glTranslatef(volPos.x, volPos.y, volPos.z); |
---|
286 | glScalef(volScaling.x, volScaling.y, volScaling.z); |
---|
287 | _cutplaneShader->setGLStateMatrixVPParameter("modelViewProjMatrix", |
---|
288 | NvShader::MODELVIEW_PROJECTION_MATRIX); |
---|
289 | glPopMatrix(); |
---|
290 | |
---|
291 | glEnable(GL_DEPTH_TEST); |
---|
292 | glDisable(GL_BLEND); |
---|
293 | |
---|
294 | glBegin(GL_QUADS); |
---|
295 | glTexCoord3f(texcoord1.x, texcoord1.y, texcoord1.z); |
---|
296 | glVertex3f(vert1.x, vert1.y, vert1.z); |
---|
297 | glTexCoord3f(texcoord2.x, texcoord2.y, texcoord2.z); |
---|
298 | glVertex3f(vert2.x, vert2.y, vert2.z); |
---|
299 | glTexCoord3f(texcoord3.x, texcoord3.y, texcoord3.z); |
---|
300 | glVertex3f(vert3.x, vert3.y, vert3.z); |
---|
301 | glTexCoord3f(texcoord4.x, texcoord4.y, texcoord4.z); |
---|
302 | glVertex3f(vert4.x, vert4.y, vert4.z); |
---|
303 | glEnd(); |
---|
304 | |
---|
305 | glDisable(GL_DEPTH_TEST); |
---|
306 | _cutplaneShader->disableFPTextureParameter("tf"); |
---|
307 | _cutplaneShader->disableFPTextureParameter("volume"); |
---|
308 | _cutplaneShader->unbind(); |
---|
309 | } //done cutplanes |
---|
310 | |
---|
311 | // Now prepare proxy geometry slices |
---|
312 | |
---|
313 | // Initialize view-aligned quads with eye space bounds of |
---|
314 | // volume |
---|
315 | vert1 = Vector4f(eyeMinX, eyeMinY, -0.5, 1); |
---|
316 | vert2 = Vector4f(eyeMaxX, eyeMinY, -0.5, 1); |
---|
317 | vert3 = Vector4f(eyeMaxX, eyeMaxY, -0.5, 1); |
---|
318 | vert4 = Vector4f(eyeMinX, eyeMaxY, -0.5, 1); |
---|
319 | |
---|
320 | size_t counter = 0; |
---|
321 | |
---|
322 | // Transform slices and store them |
---|
323 | float slice_z; |
---|
324 | for (size_t j = 0; j < n_actual_slices; j++) { |
---|
325 | slice_z = zFar + j * z_step; //back to front |
---|
326 | |
---|
327 | ConvexPolygon *poly = new ConvexPolygon(); |
---|
328 | polys[i][counter] = poly; |
---|
329 | counter++; |
---|
330 | |
---|
331 | poly->vertices.clear(); |
---|
332 | poly->setId(i); |
---|
333 | |
---|
334 | // Set eye space Z-coordinate of slice |
---|
335 | vert1.z = slice_z; |
---|
336 | vert2.z = slice_z; |
---|
337 | vert3.z = slice_z; |
---|
338 | vert4.z = slice_z; |
---|
339 | |
---|
340 | poly->appendVertex(vert1); |
---|
341 | poly->appendVertex(vert2); |
---|
342 | poly->appendVertex(vert3); |
---|
343 | poly->appendVertex(vert4); |
---|
344 | |
---|
345 | for (size_t k = 0; k < 6; k++) { |
---|
346 | if (!poly->clip(volume_planes[k], true)) |
---|
347 | break; |
---|
348 | } |
---|
349 | |
---|
350 | if (poly->vertices.size() >= 3) { |
---|
351 | poly->transform(model_view_no_trans_inverse); |
---|
352 | poly->transform(model_view_trans); |
---|
353 | total_rendered_slices++; |
---|
354 | } |
---|
355 | } |
---|
356 | } //iterate all volumes |
---|
357 | TRACE("end loop"); |
---|
358 | |
---|
359 | // We sort all the polygons according to their eye-space depth, from |
---|
360 | // farthest to the closest. This step is critical for correct blending |
---|
361 | |
---|
362 | SortElement *slices = (SortElement *) |
---|
363 | malloc(sizeof(SortElement) * total_rendered_slices); |
---|
364 | |
---|
365 | size_t counter = 0; |
---|
366 | for (size_t i = 0; i < volumes.size(); i++) { |
---|
367 | for (size_t j = 0; j < actual_slices[i]; j++) { |
---|
368 | if (polys[i][j]->vertices.size() >= 3) { |
---|
369 | slices[counter] = SortElement(polys[i][j]->vertices[0].z, i, j); |
---|
370 | counter++; |
---|
371 | } |
---|
372 | } |
---|
373 | } |
---|
374 | |
---|
375 | //sort them |
---|
376 | qsort(slices, total_rendered_slices, sizeof(SortElement), sliceSort); |
---|
377 | |
---|
378 | //Now we are ready to render all the slices from back to front |
---|
379 | glEnable(GL_DEPTH_TEST); |
---|
380 | // Non pre-multiplied alpha |
---|
381 | glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); |
---|
382 | glEnable(GL_BLEND); |
---|
383 | |
---|
384 | for (size_t i = 0; i < total_rendered_slices; i++) { |
---|
385 | Volume *volume = NULL; |
---|
386 | |
---|
387 | int volume_index = slices[i].volumeId; |
---|
388 | int slice_index = slices[i].sliceId; |
---|
389 | ConvexPolygon *currentSlice = polys[volume_index][slice_index]; |
---|
390 | float z_step = z_steps[volume_index]; |
---|
391 | |
---|
392 | volume = volumes[volume_index]; |
---|
393 | |
---|
394 | Vector3f volScaling = volume->getPhysicalScaling(); |
---|
395 | |
---|
396 | glPushMatrix(); |
---|
397 | glScalef(volScaling.x, volScaling.y, volScaling.z); |
---|
398 | |
---|
399 | // FIXME: compute view-dependent volume sample distance |
---|
400 | double avgSampleDistance = 1.0 / pow(volume->width() * volScaling.x * |
---|
401 | volume->height() * volScaling.y * |
---|
402 | volume->depth() * volScaling.z, 1.0/3.0); |
---|
403 | float sampleRatio = z_step / avgSampleDistance; |
---|
404 | |
---|
405 | #ifdef notdef |
---|
406 | TRACE("shading slice: volume %s addr=%x slice=%d, volume=%d z_step=%g avgSD=%g", |
---|
407 | volume->name(), volume, slice_index, volume_index, z_step, avgSampleDistance); |
---|
408 | #endif |
---|
409 | activateVolumeShader(volume, false, sampleRatio); |
---|
410 | glPopMatrix(); |
---|
411 | |
---|
412 | glBegin(GL_POLYGON); |
---|
413 | currentSlice->emit(true); |
---|
414 | glEnd(); |
---|
415 | |
---|
416 | deactivateVolumeShader(); |
---|
417 | } |
---|
418 | |
---|
419 | glPopAttrib(); |
---|
420 | |
---|
421 | //Deallocate all the memory used |
---|
422 | for (size_t i = 0; i < volumes.size(); i++) { |
---|
423 | for (size_t j = 0; j <actual_slices[i]; j++) { |
---|
424 | delete polys[i][j]; |
---|
425 | } |
---|
426 | if (polys[i]) { |
---|
427 | delete[] polys[i]; |
---|
428 | } |
---|
429 | } |
---|
430 | delete[] polys; |
---|
431 | delete[] actual_slices; |
---|
432 | delete[] z_steps; |
---|
433 | free(slices); |
---|
434 | } |
---|
435 | |
---|
436 | void |
---|
437 | VolumeRenderer::drawBoundingBox(float x0, float y0, float z0, |
---|
438 | float x1, float y1, float z1, |
---|
439 | float r, float g, float b, |
---|
440 | float line_width) |
---|
441 | { |
---|
442 | glPushAttrib(GL_ENABLE_BIT); |
---|
443 | |
---|
444 | glEnable(GL_DEPTH_TEST); |
---|
445 | glDisable(GL_TEXTURE_2D); |
---|
446 | glEnable(GL_BLEND); |
---|
447 | |
---|
448 | glMatrixMode(GL_MODELVIEW); |
---|
449 | glPushMatrix(); |
---|
450 | |
---|
451 | glColor4d(r, g, b, 1.0); |
---|
452 | glLineWidth(line_width); |
---|
453 | |
---|
454 | glBegin(GL_LINE_LOOP); |
---|
455 | { |
---|
456 | glVertex3d(x0, y0, z0); |
---|
457 | glVertex3d(x1, y0, z0); |
---|
458 | glVertex3d(x1, y1, z0); |
---|
459 | glVertex3d(x0, y1, z0); |
---|
460 | } |
---|
461 | glEnd(); |
---|
462 | |
---|
463 | glBegin(GL_LINE_LOOP); |
---|
464 | { |
---|
465 | glVertex3d(x0, y0, z1); |
---|
466 | glVertex3d(x1, y0, z1); |
---|
467 | glVertex3d(x1, y1, z1); |
---|
468 | glVertex3d(x0, y1, z1); |
---|
469 | } |
---|
470 | glEnd(); |
---|
471 | |
---|
472 | glBegin(GL_LINE_LOOP); |
---|
473 | { |
---|
474 | glVertex3d(x0, y0, z0); |
---|
475 | glVertex3d(x0, y0, z1); |
---|
476 | glVertex3d(x0, y1, z1); |
---|
477 | glVertex3d(x0, y1, z0); |
---|
478 | } |
---|
479 | glEnd(); |
---|
480 | |
---|
481 | glBegin(GL_LINE_LOOP); |
---|
482 | { |
---|
483 | glVertex3d(x1, y0, z0); |
---|
484 | glVertex3d(x1, y0, z1); |
---|
485 | glVertex3d(x1, y1, z1); |
---|
486 | glVertex3d(x1, y1, z0); |
---|
487 | } |
---|
488 | glEnd(); |
---|
489 | |
---|
490 | glPopMatrix(); |
---|
491 | glPopAttrib(); |
---|
492 | } |
---|
493 | |
---|
494 | void |
---|
495 | VolumeRenderer::activateVolumeShader(Volume *volume, bool sliceMode, |
---|
496 | float sampleRatio) |
---|
497 | { |
---|
498 | //vertex shader |
---|
499 | _stdVertexShader->bind(); |
---|
500 | TransferFunction *transferFunc = volume->transferFunction(); |
---|
501 | if (volume->volumeType() == Volume::CUBIC) { |
---|
502 | _regularVolumeShader->bind(transferFunc->id(), volume, sliceMode, sampleRatio); |
---|
503 | } else if (volume->volumeType() == Volume::ZINCBLENDE) { |
---|
504 | _zincBlendeShader->bind(transferFunc->id(), volume, sliceMode, sampleRatio); |
---|
505 | } |
---|
506 | } |
---|
507 | |
---|
508 | void VolumeRenderer::deactivateVolumeShader() |
---|
509 | { |
---|
510 | _stdVertexShader->unbind(); |
---|
511 | _regularVolumeShader->unbind(); |
---|
512 | _zincBlendeShader->unbind(); |
---|
513 | } |
---|
514 | |
---|
515 | void VolumeRenderer::getEyeSpaceBounds(const Matrix4x4d& mv, |
---|
516 | double& xMin, double& xMax, |
---|
517 | double& yMin, double& yMax, |
---|
518 | double& zNear, double& zFar) |
---|
519 | { |
---|
520 | double x0 = 0; |
---|
521 | double y0 = 0; |
---|
522 | double z0 = 0; |
---|
523 | double x1 = 1; |
---|
524 | double y1 = 1; |
---|
525 | double z1 = 1; |
---|
526 | |
---|
527 | double zMin, zMax; |
---|
528 | xMin = DBL_MAX; |
---|
529 | xMax = -DBL_MAX; |
---|
530 | yMin = DBL_MAX; |
---|
531 | yMax = -DBL_MAX; |
---|
532 | zMin = DBL_MAX; |
---|
533 | zMax = -DBL_MAX; |
---|
534 | |
---|
535 | double vertex[8][4]; |
---|
536 | |
---|
537 | vertex[0][0]=x0; vertex[0][1]=y0; vertex[0][2]=z0; vertex[0][3]=1.0; |
---|
538 | vertex[1][0]=x1; vertex[1][1]=y0; vertex[1][2]=z0; vertex[1][3]=1.0; |
---|
539 | vertex[2][0]=x0; vertex[2][1]=y1; vertex[2][2]=z0; vertex[2][3]=1.0; |
---|
540 | vertex[3][0]=x0; vertex[3][1]=y0; vertex[3][2]=z1; vertex[3][3]=1.0; |
---|
541 | vertex[4][0]=x1; vertex[4][1]=y1; vertex[4][2]=z0; vertex[4][3]=1.0; |
---|
542 | vertex[5][0]=x1; vertex[5][1]=y0; vertex[5][2]=z1; vertex[5][3]=1.0; |
---|
543 | vertex[6][0]=x0; vertex[6][1]=y1; vertex[6][2]=z1; vertex[6][3]=1.0; |
---|
544 | vertex[7][0]=x1; vertex[7][1]=y1; vertex[7][2]=z1; vertex[7][3]=1.0; |
---|
545 | |
---|
546 | for (int i = 0; i < 8; i++) { |
---|
547 | Vector4f eyeVert = mv.transform(Vector4f(vertex[i][0], |
---|
548 | vertex[i][1], |
---|
549 | vertex[i][2], |
---|
550 | vertex[i][3])); |
---|
551 | if (eyeVert.x < xMin) xMin = eyeVert.x; |
---|
552 | if (eyeVert.x > xMax) xMax = eyeVert.x; |
---|
553 | if (eyeVert.y < yMin) yMin = eyeVert.y; |
---|
554 | if (eyeVert.y > yMax) yMax = eyeVert.y; |
---|
555 | if (eyeVert.z < zMin) zMin = eyeVert.z; |
---|
556 | if (eyeVert.z > zMax) zMax = eyeVert.z; |
---|
557 | } |
---|
558 | |
---|
559 | zNear = zMax; |
---|
560 | zFar = zMin; |
---|
561 | } |
---|