Switching Energy in CMOS Logic: How far are we from physical limit?

Saibal Mukhopadhyay
Arijit Raychowdhury
Professor: Kaushik Roy
Dept. of Electrical \& Computer Engineering
Purdue University

Outline

- Switching energy in charge transfer based Digital Logic
- Basics and Physical Limits
- Practical consideration for switching energy in CMOS Logic
- Static requirements
- Dynamic requirements
- System considerations
- What can we do to reduce switching energy ?
- Summary

Charge Based Digital Logic

Key principles in the charge based digital logic

1. Representation of digital states

Logic "0": No Charge in the capacitor Logic "1": Charge stored in the capacitor
2. Change of digital state

Charge/dis-charge capacitor through a resistor

Switching Energy

$E_{\text {Toarl }}=\int_{0}^{\infty} i_{D D}(t) V_{\min } d t=\int_{0}^{V_{D D}} C V_{\min } d v_{0}=C V_{\text {min }}^{2}$ $E_{C a p}=\int_{0}^{\infty} i_{C}(t) v_{0}(t) d t=\int_{0}^{V_{D D}} C v_{0} d v_{0}=\frac{1}{2} C V_{\text {min }}^{2}$ $\therefore E_{\text {diss }}(\mathbf{0} \rightarrow \mathbf{1})=E_{\text {Total }}-E_{C a p}=\frac{1}{2} C V_{\text {min }}^{2}$

Time

$$
\begin{aligned}
E_{\text {diss }} & =C V_{\min }^{2} \\
& =Q V_{\min }
\end{aligned}
$$

Switching energy can be minimized by reducing \mathbf{Q} and/or $\mathrm{V}_{\text {min }}$

Physical Medium for Computation: Barrier Model

Minimum Barrier Height: Zhirnov's Model

For $L_{c h}>10 \mathrm{~nm}$
$P_{a r r} \sim \exp \left(-E_{b} / k_{B} T\right)=>E_{b}=k_{B} T \ln \left[1 / P_{a r r}\right]$
Minimum barrier height $=\mathrm{E}_{\text {bmin }} \sim \mathrm{k}_{\mathrm{B}} \operatorname{Tln}(2)$

Minimum Operating Voltage and Switching Energy

- Minimum operating voltage

$$
V_{\min } \sim k_{B} \operatorname{Tln}(2)
$$

- Minimum switching energy

$$
\mathrm{E}_{\text {diss }}=\mathrm{Q}_{\min } \mathrm{V}_{\min }=\mathrm{qk} \mathrm{k}_{\mathrm{B}} \operatorname{Tln}(2) \sim 0.7 \mathrm{k}_{\mathrm{B}} \mathrm{~T}
$$

Switching energy for an minimum sized inverter designed using in 45nm gate length devices ~ $35000 \mathrm{k}_{\mathrm{B}} \mathrm{T}$
Why are we so far from the limit?

1. Can we operate with $\mathrm{V}_{\min } \sim \mathrm{K}_{\mathrm{B}} \mathrm{T} \ln 2$?

2. Can we operate with $\mathbf{Q}_{\text {min }}=\mathbf{q}$?

Outline

- Practical consideration for switching energy in CMOS Logic
- Static requirements
- Dynamic requirements
- Circuit/System considerations

Reliability of Circuit Operation

\# of devices = $\mathrm{N}_{\mathrm{dev}}$

Circuit failure prob [\%]
Prob. of error of a single gate $=\mathrm{P}_{\text {err }}$
Prob. of error of the circuit $=P_{\text {circ }}=1-\left(1-P_{\text {err }}\right)^{\text {Ndev }}$
Reliable operation of the circuit imposes stronger constraint on the reliability of the gate operation

Reliable Operation for a Device

- Reliable operation requires a higher barrier

$$
\begin{array}{r}
-P_{\text {err }}=0.5 \\
\Rightarrow E_{b}=0.7 k_{B} T \\
-P_{\text {err }}=5 \times 10^{-12} \\
\Rightarrow E_{b}=25 k_{B} T
\end{array}
$$

- 0.1\% failure rate for a circuit of 300 million devices $=>\mathrm{V}_{\text {min }} \sim 25 \mathrm{k}_{\mathrm{B}} \mathrm{T}$

$\mathrm{k}_{\mathrm{B}} \mathrm{T} \ln (2)$

$25 \mathrm{k}_{\mathrm{B}} \mathrm{T}$

CMOS Logic: Physical Model

CMOS logic operates based on presence or absence of charge and not on localization of charge

Operation of MOS Device

Operation with a larger $p_{\text {on }} / p_{\text {off }}$ requires a higher supply voltage

Operation of CMOS Logic

Operation of CMOS Logic

Higher $p_{o n} / p_{\text {off }}$ improves maximum gain and noise margin

Operation of CMOS Logic

$2 n+1$ stages

$$
\begin{aligned}
& \operatorname{Vin}=V_{D D} / 2-\Delta \\
& \operatorname{Vo}(1)=\operatorname{Vin}(2)=V_{D D} / 2+\Delta A_{v} \\
& M
\end{aligned}
$$

$$
\operatorname{Vo}(2 n+1)=V_{D D} / 2-\Delta(-1)^{2 n+1} A_{v}^{2 n+1}
$$

$$
\text { if } A_{v}<1 \text {, as } n \rightarrow \infty, \mathbf{V}_{\mathbf{o}} \rightarrow \mathbf{V}_{\mathrm{DD}} / \mathbf{2}
$$

Vin

$$
\text { if } A_{v}>1 \text {, as } n \rightarrow \infty, V_{0} \rightarrow V_{O H}
$$

Operation of CMOS Logic

distinguishability

\Rightarrow Gain $\left(A_{V}\right)>1$
for CMOS inverter Minimum $p_{o n} / P_{\text {off }}$ is " 4 " and not "2"

On state to off state prob ratio ($\mathrm{p}_{\text {on }} / \mathrm{P}_{\text {off }}$)

Operation of CMOS Logic

To prevent spontaneous change of state noise margin needs to be at least higher than $k_{B} T$
$\Rightarrow V_{D D}>3 k_{B} T$

Reliability of Circuit Operation

\# of gates = $\mathbf{N}_{\text {gate }}$

Prob. of error of a single gate $=P_{\text {err }}$
Prob. of error of the circuit $=P_{\text {circ }}=1-\left(1-P_{\text {err }}\right)^{\text {Ndev }}$
Reliable operation of the circuit imposes stronger constraint on the reliability of the gate operation

Reliability of CMOS Inverter Operation

Higher noise requires a larger noise margin for reliable operation

Reliability of CMOS Inverter Operation

Operations of CMOS Logic

1. It is a "single well - double barrier" system.
2. Presence or absence of charge at the "well" determines the logic state
3. At both logic states, the well is strongly coupled to V_{DD} or GND through a "on" device

The "driven" nature of CMOS logic makes it reliable even at very low voltage operation

Limit of $p_{\text {off }}$: Leakage Power

Outline

- Practical consideration for switching energy in CMOS Logic
- Dynamic requirements

Delay in CMOS Logic

Time

Time

Delay and Switching Energy

Time

- Delay through an RC circuit
- Independent of applied voltage $\mathrm{V}_{\text {min }}$
- Lower C reduces both delay and switching energy : key principle in technology scaling

Delay and Switching Energy : $\mathrm{v}_{\mathrm{s}} \quad$ CMOS Logic

The dependence of $\mathbf{R}_{\text {on }}$ on the applied gate bias makes delay and energy correlated for CMOS
$C_{\text {gate }} V_{D D}=\tau I_{o n}$
For: $W_{P}=2 W_{N}=2 L_{\text {min }}$
$\left(1+\frac{C_{p a r}}{C_{o x}}\right) 3 L_{\min }^{2} C_{o x} V_{D D}=\tau \mu_{\text {eff }} \frac{L_{\min }}{2 L_{\min }} C_{o x}\left(V_{D D}-\eta \frac{E_{b O F F}}{q}\right)^{2}$

Impact of Delay on Minimum V_{DD}

$\mathrm{V}_{\text {min }}=10 \mathrm{k}_{\mathrm{B}} \mathrm{T}$

Non-ideal subthreshold slope

A larger subthreshold slope requires a higher V_{DD} to achieve a pon/poff

Non-ideal subthreshold slope

Non-ideal subthreshold slope increases the V_{DD} required to achieve a certain delay

2-D Electrostatics

Degraded Sub-slope

Drain Induced Barrier Lowering

Time

2-D Electrostatics

Under same leakage power 2-D effect increases the V_{DD} required to achieve a target delay

Process Variability

Variation in Process Parameters
Leakage ~ Poff variation

Reliability ~ $p_{\text {on }} / p_{\text {off }}$ variation
Delay ~ variation in $E_{\text {boff }}$ will change the delay
The designed $\mathrm{E}_{\mathrm{bOFF}}$ and V_{DD} needs to be increased to account for the effect of variation
$\pm 10 \%$ variation in $E_{\text {boff }}=>V_{\text {DD }} \sim 42 k_{B} T$

Why We are using V_{DD} much larger than the $\mathrm{k}_{\mathrm{B}} \operatorname{Tln}(2)$ limit?

Distinguishability

$$
42\left(k_{B} T / q\right)
$$

$$
10\left(k_{B} T / q\right)
$$

Reliability
Noisetolerance

Subth. Slope, 2-D effect, Process variation, etc.

Non-idealities

$28\left(k_{B} T / q\right)$

Drivability in Digital Logic

Vmin needs to be developed across a finite capacitance for drivino the next date

Drivability and Minimum Charge

Drivability requirement does not allow to operate with a single electron for CMOS logic operation

Drivability and Switching Energy

Drivability requirement increases the minimum switching energy for an inverter to $\sim 33,000 k_{B} T$

Switching Energy in CMOS Logic

 Delay ~ 1ps, High reliability

Outline

- Practical consideration for switching energy in CMOS Logic
- Circuit/System considerations

Operation of CMOS Circuits

- For logic operation a gate has to drive more than one gates in a CMOS logic
- Typical fanout is assumed to be 4

Switching Energy in CMOS Logic

Delay ~ 1ps, High reliability

$220,000 k_{B} T$

Switching Energy for a System

Driving "Iong" interconnects can significantly
increase the switching energy

Switching Energy for a System

Interconnect of length $\sim 400 \mu \mathrm{~m}$ has 100 fF of cap which requires ~28,000,000 $\mathrm{k}_{\mathrm{B}} \mathrm{T}$ to switch

How many long interconnects exists in an Integrated Circuits?

- For a logic block of ' N ' elements (say inverters) the total number of external interconnects : $\mathrm{T}=\mathrm{kNp}$
$\mathrm{p}=$ Rent's exponent - represents the balance between local and global interconnects
- Rent's rule \rightarrow Int. conn. length distribution

Density $=i(l)=$ \# of Int with length ' l ' s.t. $a<l<b$ Distribution $=I(l)=$ \# of Int with length less than ' l '

- Wiring capacitance can be calculated from interconnect length distribution

1. Feynman Lectures on Computation, pages 277-282
2. W.E. Donath, IBM J. Res. Develop. 25, 152 (1981)
3. J.A. Davis, et. al, IEEE TED, vol. 45, March 1998, pp:580-597

Distribution of Interconnect

A higher Rent's exponent indicates a higher number of global interconnects

Switching Energy for a System

Interconnect (or wiring) capacitance can increase the average switching energy of a gate to ~1.200.000 kBT

Practical Limits in Switching Energy in CMOS Systems

Physical Limit: $\mathrm{k}_{\mathrm{B}} \mathrm{Tln}(2)$

Requirement for Computation: $33,000 \mathrm{k}_{\mathrm{B}} \mathrm{T}$ Reliability, Speed and Drivability

Requirement for Communication: $1,200,000 \mathrm{k}_{\mathrm{B}} \mathrm{T}$
Local and global communication

How can we reduce the practical switching energy limit?

Switching Energy and Leakage Power Trade-off

Operating at 10X higher leakage can reduce the switching energy from $33,000 \mathrm{k}_{\mathrm{B}} \mathrm{T}$ to $23,000 \mathrm{k}_{\mathrm{B}} \mathrm{T}$

Can Higher Mobility help?

Mobility Enhancement Factor

Devices with higher mobility and higher leakage target can reduce switching energy

Switching Energy and Delay Trade-off

For delay targets >100 ps subthreshold operation is more energy efficient

Switching Energy for a System

Reducing the number of local interconnects can significantly reduce the system switching energy

Single Electron Operation in CMOS

Single electron operation at room temperature is only possible if C < 9aF

Scaling and Single Electron Operation in CMOS

Single electron operation in CMOS logic is possible for L < 8nm

Scaling and Switching Energy

Scaling helps to reduce switching energy even if the supply voltage remains the same

Scaling and Thermal Noise

$$
\begin{aligned}
& V_{\text {noise }}=\sigma_{\text {noise }}=\sqrt{\frac{4 k_{B} T R}{R C}}=\sqrt{\frac{4 k_{B} T}{C}} \\
& \text { For }: C=0.1 \mathrm{fF} \Rightarrow \sigma_{\text {noise }}=12 \mathrm{mV} \\
& \text { For }: C=9 a F \Rightarrow \sigma_{\text {noise }}=43 \mathrm{mV}
\end{aligned}
$$

Channel Length [nm]

Increase in thermal noise at lower capacitance can reduce the energy benefit of scaling

Summary

1. Can we operate with $\mathrm{V}_{\min } \sim \mathrm{K}_{\mathrm{B}} \mathrm{Tln} 2$? - Reliability

- Delay
- sub. slope, 2-D effects, variability etc.

2. Can we operate with $\mathbf{Q}_{\min }=\mathbf{q}$?

- Drivability
- Parasitic and Interconnect capacitance

Device/Circuit/System level investigations can reduce the practical limit of switching energy, but it is very difficult to achieve the physical limit in CMOS logic

References

1. V. Zhirnov et. al, Proceedings of the IEEE, vol. 91, Nov 2003 pp. 1934-1939.
2. J. D. Meindl, Proceedings of the IEEE, Vol.83, April 1995, pp.:619-635
3. W.E. Donath, IBM J. Res. Develop. 25, 152 (1981)
4. J.A. Davis, et. al, IEEE TED, vol. 45, March 1998, pp:580 - 597 (two consecutive papers)
5. L. B. Kish, Phys. Lett. A, vol. 305, pp. 144-149, 2002.
6. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 1998

Questions and Answers

Scaling and Single Electron Operation in CMOS

Single electron operation in CMOS logic is possible for L < 8nm

Drivability in Digital Logic

Vmin needs to be developed across a finite capacitance for drivino the next date

Drivability and Minimum Charge

Drivability requirement does not allow to operate with a single electron for CMOS logic operation

