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On Reliability of Microelectronic Devices:



Reliability has always been Important!

A 5000 year old example: 
            Stone vs. Copper tools

A modern example: 
            Honda vs. Yugo

“The car is named Yugo, because it doesn’t …” 

Reliability has always been Important!



Microelectronics reliability & viable technologies

 Kelly (Bell Labs) to recently-hired Shockley in 1936: 

    “Instead of mechanical devices, which has annoying maintenance 
       problem, we should look for (reliable) solid state switch ….” 

 Pauli to his student Peierls, in 1932, on unreliability of  Cu2S, Ag2S:

       “ Do not work on semiconductors, it is a mess (eine schweinerei); 
          who knows if semiconductor exists at all …..”

  Landauer on quantum computing (1992): 

     “ …. this proposal depends on speculative technology, does not in its current 
       form account all possible sources of noise, unreliability, and manufacturing 
       error, and probably will not work.”

Microelectronics reliability & viable
technologies



Warranty, Product Recall, and Other Facts of Life

A manufacturer bets 
the company of the 
physics of reliability …..

… because the ICs  
operate in incredibly 
harsh conditions, turning
on and off trillions of time
during its lifetime ….

… because the lines could 
open, the source/drain 
can be shorted, the gate
oxide can break ….

Warranty, Product Recall, and Other Facts of
Life



Si-H and SiO2 Bonds

Si-H and SiO2 Bonds



Reliability Issues in Modern Transistors

Initially ….
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 .... a few months later 

Broken Si-H bonds: Negative Bias Temperature Instability (NBTI)
                                     Hot carrier degradation (HCI)

Broken Si-O bonds: Gate dielectric Breakdown (TDDB)

Reliability Issues in Modern Transistors



Introduction: NBTI defined 

GND
VDD

NBTI: Negative Bias Temperature Instability

Gate: GND, Drain: VDD, Source: VDD
Gate negative with respect to S/D

Other degradation modes: TDDB, HCI, etc.

VDD

Introduction: NBTI defined
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A Brief History of NBTI

Experiments in late 1960s by  Deal and Grove at Fairchild

  Role of Si-H bonds and BTI vs. NBTI story (J. Electrochem Soc. 1973;114:266)
  Came out naturally as PMOS was dominant
  Important in FAMOS and p-MNOS EEPROMS (Solid State Ckts 1971;6:301)

Theory in late 1970s by Jeppson  (JAP, 1977;48:2004)

   Generalized Reaction-Diffusion Model
   Discusses the role of relaxation, bulk traps, …..
   Comprehensive study of available experiments

Early 1980s

   Issue disappears with NMOS technology and buried channel PMOS

Late 1980s and Early 1990s

   Begins to become an issue with dual poly gate,
      but HCI dominates device reliability

Late 1990s/Early 2000 (Kimizuka, IRPS97;282. Yamamoto, TED99;46:921. Mitani, IEDM02;509)

  Voltage scaling reduces HCI and TDDB, but increasing field & temperature
     reintroduce NBTI concerns for both analog and digital circuits
  Numerical solution is extensively used for theoretical modeling of NBTI.

A Brief History of NBTI
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A 40-year-old Puzzle …
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Trap Generation

 n=0.25  (H diffusion ?)
 EA=0.5 (H2 diffusion ?)

Before 1980 

 The exponent is soft (nsat = 0.16) !
 NBTI depends on frequency.
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A 40-year-old Puzzle …



A Word about Drawings

Silicon Gate oxide Poly
Si H
Si H

Si H

Si H

Si H

Si H H2
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A Word about Drawings



The Reaction-Diffusion Model

Silicon Gate oxide Poly
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The Reaction-Diffusion Model



Meaning of the Parameters
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A Reformulation of R-D Model

2

2
2

IT H H

H H H

dN d N dN
D N E

dt dx dt

!
µ= + +

0( ) (0)IT

F IT R H IT

dN
k N N k N N

dt
= ! !

N
H

x

( )
H

x t D t=

0
( ) ( , )

HD t

IT H
N t N x t dx= ! (Neutral)

N
H

x

( )
H ox

x t E tµ=

0
( ) ( , )

H oxE t

IT H
N t N x t dx

µ

= ! (Charged)

Si
Si
Si H

H
H

H

H H

H

Si
 s

ub
.

Po
ly

0 (0)F

H IT

R

k N
N N

k

! "
#$ %

& '

If trap generation rate is small,
and if NIT much smaller than N0, then

( ) ( , , )

0
( ) ( , )

H Hx t f D t

IT H
x

N t N x t dx
µ=

=
= !

A Reformulation of R-D Model



NIT with Neutral H Diffusion
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n ∼ 1/4 is a possible signature
of neutral H diffusion

Reproduces results of Jeppson, JAP, 1977.

NIT with Neutral H Diffusion



NIT with Neutral H2 Diffusion
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NIT with Neutral H2 Diffusion



NIT with charged H+ Drift
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NIT with charged H+ Drift



NIT with charge H2
+  Drift

 n ~ 1/3 is a possible signature
    of charged H2

+ diffusion

 Exponents above 1/3 seldom
    seen in charge-pumping expt.
    (uncorrelated to SILC).
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Dispersive Diffusion & non-rational n
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 More amorphous oxides for better NBTI

 For finite oxides, at very long time all n
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Clue 1: NBTI Saturation 
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Clue 1: NBTI Saturation



Saturation by Poly Reflection
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… but the explanation is wrong
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Clue 2: Frequency Dependence
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Ming-Fu Li, National University of Singapore, EDL, 2002. 

Clue 2: Frequency Dependence



R-D Model at Low Frequencies
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Analytical Model: Relaxation Phase
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Approximate Analytical Models
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Approximate Analytical Models



Frequency Dependence Interpreted

Symmetry in R-D model requires 
frequency-independent degradation

simulation
meas.
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Frequency Dependence Interpreted



Frequency Independence Interpreted
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R-D model anticipates 
Frequency Independence!
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Measurement: A variable-frequency AC Stress!

1s 10s 100s 1000s Stress time 

What we thought we were doing … 

S. Rangan, Intel, IEDM 2003.

6s 21s 126s 1031s Stress time 

What we were actually doing … 

* 5 sec. measurement window (for example). 

Measurement: A variable-frequency AC
Stress!



R-D Simulations for DC NBTI

Actually, n=0.16 at all times (H2 diffusion), measurement delay makes it
appear n=0.25 at short times. A 40 year old puzzle finally resolved!

H. Kuflouglu,
unpublished 
results

R-D Simulations for DC NBTI



AC NBTI: Sim. & Measurement

 Only DC simulations are fit to
experimental data (VG=2.1V).

 AC simulations are inherently
related to DC results

 Delay of 6.3 sec is used

AC NBTI: Sim. & Measurement



Conclusive Confirmation
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Conclusions 

 Reliability is, has been, and will be a key consideration for a viable technology. 

 Over the last fifteen years, reliability engineering (a collection of pragmatic, 
    empirical rules) have gradually evolved into reliability physics (grounded 
    in sound understanding of underlying physics).

 In this talk we considered NBTI, similar physical models exist for Hot 
    carrier degradation and Time dependent dielectric breakdown. 

 The NBTI model provides proper prescription of extrapolating device lifetime. 
     We will consider these extrapolation methods in a separate talk.  

 Finally, do not underestimate the power of simple models. What we did in 
     4/5 lines of algebra, is actually equivalent to tens  of PRB, JAP, TED, 
     EDL papers over last 30 years. 

Conclusions
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Questions & Answers


